用共振剪切测量方法研究密闭液体:润滑的分子机制

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kazue Kurihara
{"title":"用共振剪切测量方法研究密闭液体:润滑的分子机制","authors":"Kazue Kurihara","doi":"10.1021/acs.langmuir.4c03732","DOIUrl":null,"url":null,"abstract":"Confined liquids present intriguing phenomena not only for foundational research but also for various engineering applications, particularly in tribology. When liquids are confined in a nanospace between solid substrates, they exhibit unique properties different from those of the bulk state due to altered molecular packing and motion restrictions and/or molecular interaction with the substrate surfaces. It has profound implications in the study of lubrication, especially in boundary lubrication where energy efficient low-viscosity lubricants typically lead to high friction and wear. Recent findings suggest that some lubricant molecules can persist between substrates, with their effective viscosity increasing dramatically depending on the molecular structure. Resonance shear measurement (RSM) with a surface forces apparatus (SFA) has become an important tool for the molecular level analysis of confined liquids. This review examines research utilizing RSM on various confined liquids, such as interfacial water, ionic liquids, and lubricant oils, to understand their lubrication mechanism. It discusses the impact of alkali ion hydration and hydrogen bonding on interfacial water properties and how different anions paired with the same cations in ionic liquids can lead to different ion packing at the interface, ultimately affecting their lubrication properties. A novel feature of boundary lubrication is presented based on the properties of confined oil lubricants. These findings, supported by molecular simulation and X-ray diffraction, underscore the significance of confined liquids in both scientific inquiry and the engineering of more efficient and energy-saving lubrication systems, paving the way for molecular design of future lubricants.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"212 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confined Liquids Studied by Resonance Shear Measurement: Molecular Mechanism of Lubrication\",\"authors\":\"Kazue Kurihara\",\"doi\":\"10.1021/acs.langmuir.4c03732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Confined liquids present intriguing phenomena not only for foundational research but also for various engineering applications, particularly in tribology. When liquids are confined in a nanospace between solid substrates, they exhibit unique properties different from those of the bulk state due to altered molecular packing and motion restrictions and/or molecular interaction with the substrate surfaces. It has profound implications in the study of lubrication, especially in boundary lubrication where energy efficient low-viscosity lubricants typically lead to high friction and wear. Recent findings suggest that some lubricant molecules can persist between substrates, with their effective viscosity increasing dramatically depending on the molecular structure. Resonance shear measurement (RSM) with a surface forces apparatus (SFA) has become an important tool for the molecular level analysis of confined liquids. This review examines research utilizing RSM on various confined liquids, such as interfacial water, ionic liquids, and lubricant oils, to understand their lubrication mechanism. It discusses the impact of alkali ion hydration and hydrogen bonding on interfacial water properties and how different anions paired with the same cations in ionic liquids can lead to different ion packing at the interface, ultimately affecting their lubrication properties. A novel feature of boundary lubrication is presented based on the properties of confined oil lubricants. These findings, supported by molecular simulation and X-ray diffraction, underscore the significance of confined liquids in both scientific inquiry and the engineering of more efficient and energy-saving lubrication systems, paving the way for molecular design of future lubricants.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03732\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03732","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

密闭液体不仅在基础研究中呈现出有趣的现象,而且在各种工程应用中,特别是在摩擦学中。当液体被限制在固体衬底之间的纳米空间中时,由于改变了分子堆积和运动限制以及/或与衬底表面的分子相互作用,它们表现出与体态不同的独特性质。它对润滑的研究具有深远的意义,特别是在边界润滑中,高效的低粘度润滑剂通常会导致高摩擦和磨损。最近的研究表明,一些润滑剂分子可以在底物之间持续存在,其有效粘度随着分子结构的变化而急剧增加。基于表面力仪(SFA)的共振剪切测量(RSM)已成为限制液体分子水平分析的重要工具。本文综述了在界面水、离子液体和润滑油等各种受限液体中应用RSM的研究,以了解它们的润滑机理。讨论了碱离子水化和氢键对界面水性质的影响,以及离子液体中不同的阴离子与相同的阳离子配对如何导致界面上不同的离子堆积,最终影响其润滑性能。基于承压油润滑油的特性,提出了一种新的边界润滑特性。这些发现得到了分子模拟和x射线衍射的支持,强调了密闭液体在科学探索和更高效节能润滑系统工程中的重要性,为未来润滑油的分子设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Confined Liquids Studied by Resonance Shear Measurement: Molecular Mechanism of Lubrication

Confined Liquids Studied by Resonance Shear Measurement: Molecular Mechanism of Lubrication
Confined liquids present intriguing phenomena not only for foundational research but also for various engineering applications, particularly in tribology. When liquids are confined in a nanospace between solid substrates, they exhibit unique properties different from those of the bulk state due to altered molecular packing and motion restrictions and/or molecular interaction with the substrate surfaces. It has profound implications in the study of lubrication, especially in boundary lubrication where energy efficient low-viscosity lubricants typically lead to high friction and wear. Recent findings suggest that some lubricant molecules can persist between substrates, with their effective viscosity increasing dramatically depending on the molecular structure. Resonance shear measurement (RSM) with a surface forces apparatus (SFA) has become an important tool for the molecular level analysis of confined liquids. This review examines research utilizing RSM on various confined liquids, such as interfacial water, ionic liquids, and lubricant oils, to understand their lubrication mechanism. It discusses the impact of alkali ion hydration and hydrogen bonding on interfacial water properties and how different anions paired with the same cations in ionic liquids can lead to different ion packing at the interface, ultimately affecting their lubrication properties. A novel feature of boundary lubrication is presented based on the properties of confined oil lubricants. These findings, supported by molecular simulation and X-ray diffraction, underscore the significance of confined liquids in both scientific inquiry and the engineering of more efficient and energy-saving lubrication systems, paving the way for molecular design of future lubricants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信