Jose J. Blanco-Pillado, Alberto García Martín-Caro, Daniel Jiménez-Aguilar, Jose M. Queiruga
{"title":"域壁动力学的有效行动","authors":"Jose J. Blanco-Pillado, Alberto García Martín-Caro, Daniel Jiménez-Aguilar, Jose M. Queiruga","doi":"10.1103/physrevd.111.056007","DOIUrl":null,"url":null,"abstract":"We introduce a systematic method to derive the effective action for domain walls directly from the scalar field theory that gives rise to their solitonic solutions. The effective action for the Goldstone mode, which characterizes the soliton’s position, is shown to consist of the Nambu-Goto action supplemented by higher-order curvature invariants associated to its worldvolume metric. Our approach constrains the corrections to a finite set of Galileon terms, specifying both their functional forms and the procedure to compute their coefficients. We do a collection of tests across various models in 2</a:mn>+</a:mo>1</a:mn></a:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>3</c:mn><c:mo>+</c:mo><c:mn>1</c:mn></c:math> dimensions that confirm the validity of this framework. Additionally, the method is extended to include bound scalar fields living on the world sheet, along with their couplings to the Goldstone mode. These interactions reveal a universal nonminimal coupling of these scalar fields to the Ricci scalar on the world sheet. A significant consequence of this coupling is the emergence of a parametric instability, driven by interactions between the bound states and the Goldstone mode. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"87 1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective actions for domain wall dynamics\",\"authors\":\"Jose J. Blanco-Pillado, Alberto García Martín-Caro, Daniel Jiménez-Aguilar, Jose M. Queiruga\",\"doi\":\"10.1103/physrevd.111.056007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a systematic method to derive the effective action for domain walls directly from the scalar field theory that gives rise to their solitonic solutions. The effective action for the Goldstone mode, which characterizes the soliton’s position, is shown to consist of the Nambu-Goto action supplemented by higher-order curvature invariants associated to its worldvolume metric. Our approach constrains the corrections to a finite set of Galileon terms, specifying both their functional forms and the procedure to compute their coefficients. We do a collection of tests across various models in 2</a:mn>+</a:mo>1</a:mn></a:math> and <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mn>3</c:mn><c:mo>+</c:mo><c:mn>1</c:mn></c:math> dimensions that confirm the validity of this framework. Additionally, the method is extended to include bound scalar fields living on the world sheet, along with their couplings to the Goldstone mode. These interactions reveal a universal nonminimal coupling of these scalar fields to the Ricci scalar on the world sheet. A significant consequence of this coupling is the emergence of a parametric instability, driven by interactions between the bound states and the Goldstone mode. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"87 1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.056007\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.056007","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We introduce a systematic method to derive the effective action for domain walls directly from the scalar field theory that gives rise to their solitonic solutions. The effective action for the Goldstone mode, which characterizes the soliton’s position, is shown to consist of the Nambu-Goto action supplemented by higher-order curvature invariants associated to its worldvolume metric. Our approach constrains the corrections to a finite set of Galileon terms, specifying both their functional forms and the procedure to compute their coefficients. We do a collection of tests across various models in 2+1 and 3+1 dimensions that confirm the validity of this framework. Additionally, the method is extended to include bound scalar fields living on the world sheet, along with their couplings to the Goldstone mode. These interactions reveal a universal nonminimal coupling of these scalar fields to the Ricci scalar on the world sheet. A significant consequence of this coupling is the emergence of a parametric instability, driven by interactions between the bound states and the Goldstone mode. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.