具有离子分离加速通道的高稳定性锌离子电池自组装聚电解质

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xueying Hu, Haobo Dong, Nan Gao, Tianlei Wang, Hongzhen He, Xuan Gao, Yuhang Dai, Yiyang Liu, Dan J. L. Brett, Ivan P. Parkin, Guanjie He
{"title":"具有离子分离加速通道的高稳定性锌离子电池自组装聚电解质","authors":"Xueying Hu, Haobo Dong, Nan Gao, Tianlei Wang, Hongzhen He, Xuan Gao, Yuhang Dai, Yiyang Liu, Dan J. L. Brett, Ivan P. Parkin, Guanjie He","doi":"10.1038/s41467-025-57666-0","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO<sub>4</sub><sup>2</sup><sup>−</sup> and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (&gt; 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"10 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries\",\"authors\":\"Xueying Hu, Haobo Dong, Nan Gao, Tianlei Wang, Hongzhen He, Xuan Gao, Yuhang Dai, Yiyang Liu, Dan J. L. Brett, Ivan P. Parkin, Guanjie He\",\"doi\":\"10.1038/s41467-025-57666-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO<sub>4</sub><sup>2</sup><sup>−</sup> and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (&gt; 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57666-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57666-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水性锌离子电池由于其丰富、安全和环保的特点,为锂离子电池提供了一个可持续的替代品。然而,H +、Zn 2 +和SO₄2⁻在电解质中的析氢和不受控制的扩散等挑战导致了枝晶的形成、副反应和Zn成核的库仑效率降低。为了同时调节电解质中阳离子和阴离子的扩散,通过引入絮凝剂聚丙烯胺盐酸盐及其互变异构体聚丙烯酸的层层自组装,构建了离子分离加速通道。由羧酸阴离子和氨离子之间的强静电相互作用产生的双离子通道阻断了SO42 -,促进了Zn沿Zn(002)平面均匀沉积,在Cu b| |锌电池中循环1600次后,CE达到99.8%。随着一层一层自组装锌阳极的简单制造,具有高质量负载(> 8 mg cm⁻²)的Ah级袋状电池(17.36 Ah)在大规模应用中具有实际可行性,在1.7℃(35.3分钟)下保持250次循环93.6%的容量。这项工作使锌沉积更加均匀,并提高了更大袋电池的循环稳定性,为锌离子电池的商业化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries

Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries

Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO42 and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信