利用深度学习技术从计算机断层扫描中对左心室、左心房和左心房附件功能进行准确的全自动评估。

European heart journal. Imaging methods and practice Pub Date : 2025-03-06 eCollection Date: 2024-10-01 DOI:10.1093/ehjimp/qyaf011
Lee Jollans, Mariana Bustamante, Lilian Henriksson, Anders Persson, Tino Ebbers
{"title":"利用深度学习技术从计算机断层扫描中对左心室、左心房和左心房附件功能进行准确的全自动评估。","authors":"Lee Jollans, Mariana Bustamante, Lilian Henriksson, Anders Persson, Tino Ebbers","doi":"10.1093/ehjimp/qyaf011","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Assessment of cardiac function is essential for diagnosis and treatment planning in cardiovascular disease. Volume of cardiac regions and the derived measures of stroke volume (SV) and ejection fraction (EF) are most accurately calculated from imaging. This study aims to develop a fully automatic deep learning approach for calculation of cardiac function from computed tomography (CT).</p><p><strong>Methods and results: </strong>Time-resolved CT data sets from 39 patients were used to train segmentation models for the left side of the heart including the left ventricle (LV), left atrium (LA), and left atrial appendage (LAA). We compared nnU-Net, 3D TransUNet, and UNETR. Dice Similarity Scores (DSS) were similar between nnU-Net (average DSS = 0.91) and 3D TransUNet (DSS = 0.89) while UNETR performed less well (DSS = 0.69). Intra-class correlation analysis showed nnU-Net and 3D TransUNet both accurately estimated LVSV (ICC<sub>nnU-Net</sub> = 0.95; ICC<sub>3DTransUNet</sub> = 0.94), LVEF (ICC<sub>nnU-Net</sub> = 1.00; ICC<sub>3DTransUNet</sub> = 1.00), LASV (ICC<sub>nnU-Net</sub> = 0.91; ICC<sub>3DTransUNet</sub> = 0.80), LAEF (ICC<sub>nnU-Net</sub> = 0.95; ICC<sub>3DTransUNet</sub> = 0.81), and LAASV (ICC<sub>nnU-Net</sub> = 0.79; ICC<sub>3DTransUNet</sub> = 0.81). Only nnU-Net significantly predicted LAAEF (ICC<sub>nnU-Net</sub> = 0.68). UNETR was not able to accurately estimate cardiac function. Time to convergence during training and time needed for inference were both faster for 3D TransUNet than for nnU-Net.</p><p><strong>Conclusion: </strong>nnU-Net outperformed two different vision transformer architectures for the segmentation and calculation of function parameters for the LV, LA, and LAA. Fully automatic calculation of cardiac function parameters from CT using deep learning is fast and reliable.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"2 4","pages":"qyaf011"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883084/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate fully automated assessment of left ventricle, left atrium, and left atrial appendage function from computed tomography using deep learning.\",\"authors\":\"Lee Jollans, Mariana Bustamante, Lilian Henriksson, Anders Persson, Tino Ebbers\",\"doi\":\"10.1093/ehjimp/qyaf011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Assessment of cardiac function is essential for diagnosis and treatment planning in cardiovascular disease. Volume of cardiac regions and the derived measures of stroke volume (SV) and ejection fraction (EF) are most accurately calculated from imaging. This study aims to develop a fully automatic deep learning approach for calculation of cardiac function from computed tomography (CT).</p><p><strong>Methods and results: </strong>Time-resolved CT data sets from 39 patients were used to train segmentation models for the left side of the heart including the left ventricle (LV), left atrium (LA), and left atrial appendage (LAA). We compared nnU-Net, 3D TransUNet, and UNETR. Dice Similarity Scores (DSS) were similar between nnU-Net (average DSS = 0.91) and 3D TransUNet (DSS = 0.89) while UNETR performed less well (DSS = 0.69). Intra-class correlation analysis showed nnU-Net and 3D TransUNet both accurately estimated LVSV (ICC<sub>nnU-Net</sub> = 0.95; ICC<sub>3DTransUNet</sub> = 0.94), LVEF (ICC<sub>nnU-Net</sub> = 1.00; ICC<sub>3DTransUNet</sub> = 1.00), LASV (ICC<sub>nnU-Net</sub> = 0.91; ICC<sub>3DTransUNet</sub> = 0.80), LAEF (ICC<sub>nnU-Net</sub> = 0.95; ICC<sub>3DTransUNet</sub> = 0.81), and LAASV (ICC<sub>nnU-Net</sub> = 0.79; ICC<sub>3DTransUNet</sub> = 0.81). Only nnU-Net significantly predicted LAAEF (ICC<sub>nnU-Net</sub> = 0.68). UNETR was not able to accurately estimate cardiac function. Time to convergence during training and time needed for inference were both faster for 3D TransUNet than for nnU-Net.</p><p><strong>Conclusion: </strong>nnU-Net outperformed two different vision transformer architectures for the segmentation and calculation of function parameters for the LV, LA, and LAA. Fully automatic calculation of cardiac function parameters from CT using deep learning is fast and reliable.</p>\",\"PeriodicalId\":94317,\"journal\":{\"name\":\"European heart journal. Imaging methods and practice\",\"volume\":\"2 4\",\"pages\":\"qyaf011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Imaging methods and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjimp/qyaf011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyaf011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:心功能评估对心血管疾病的诊断和治疗计划至关重要。心脏区域的容积和衍生的卒中容积(SV)和射血分数(EF)是最准确地从成像计算出来的。本研究旨在开发一种全自动深度学习方法,用于计算机断层扫描(CT)心功能的计算。方法与结果:利用39例患者的时间分辨CT数据集,训练左心室(LV)、左心房(LA)、左心房附件(LAA)等心脏左侧的分割模型。我们比较了nnU-Net、3D TransUNet和UNETR。nnU-Net(平均DSS = 0.91)和3D TransUNet (DSS = 0.89)的骰子相似度评分(DSS = 0.69)相似,而UNETR表现较差(DSS = 0.69)。类内相关分析显示,nnU-Net和3D TransUNet均能准确估计LVSV (ICCnnU-Net = 0.95;ICC3DTransUNet = 0.94), LVEF (ICCnnU-Net = 1.00;ICC3DTransUNet = 1.00), LASV (ICCnnU-Net = 0.91;ICC3DTransUNet = 0.80), LAEF (ICCnnU-Net = 0.95;ICC3DTransUNet = 0.81), LAASV (ICCnnU-Net = 0.79;ICC3DTransUNet = 0.81)。只有nnU-Net能显著预测LAAEF (ICCnnU-Net = 0.68)。UNETR无法准确估计心功能。3D TransUNet的训练收敛时间和推理时间都比nnU-Net快。结论:nnU-Net在LV、LA和LAA的分割和功能参数计算方面优于两种不同的视觉转换器架构。利用深度学习从CT中全自动计算心功能参数,快速可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate fully automated assessment of left ventricle, left atrium, and left atrial appendage function from computed tomography using deep learning.

Aims: Assessment of cardiac function is essential for diagnosis and treatment planning in cardiovascular disease. Volume of cardiac regions and the derived measures of stroke volume (SV) and ejection fraction (EF) are most accurately calculated from imaging. This study aims to develop a fully automatic deep learning approach for calculation of cardiac function from computed tomography (CT).

Methods and results: Time-resolved CT data sets from 39 patients were used to train segmentation models for the left side of the heart including the left ventricle (LV), left atrium (LA), and left atrial appendage (LAA). We compared nnU-Net, 3D TransUNet, and UNETR. Dice Similarity Scores (DSS) were similar between nnU-Net (average DSS = 0.91) and 3D TransUNet (DSS = 0.89) while UNETR performed less well (DSS = 0.69). Intra-class correlation analysis showed nnU-Net and 3D TransUNet both accurately estimated LVSV (ICCnnU-Net = 0.95; ICC3DTransUNet = 0.94), LVEF (ICCnnU-Net = 1.00; ICC3DTransUNet = 1.00), LASV (ICCnnU-Net = 0.91; ICC3DTransUNet = 0.80), LAEF (ICCnnU-Net = 0.95; ICC3DTransUNet = 0.81), and LAASV (ICCnnU-Net = 0.79; ICC3DTransUNet = 0.81). Only nnU-Net significantly predicted LAAEF (ICCnnU-Net = 0.68). UNETR was not able to accurately estimate cardiac function. Time to convergence during training and time needed for inference were both faster for 3D TransUNet than for nnU-Net.

Conclusion: nnU-Net outperformed two different vision transformer architectures for the segmentation and calculation of function parameters for the LV, LA, and LAA. Fully automatic calculation of cardiac function parameters from CT using deep learning is fast and reliable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信