{"title":"功能分子探针在霍乱弧菌Na+易位nadh -泛醌氧化还原酶NqrB亚基中的精确引入。","authors":"Saya Miyachi , Hinako Tanaka , Moe Ishikawa , Danielle Mcfee , Wataru Aoki , Masatoshi Murai , Blanca Barquera , Hideto Miyoshi , Takahiro Masuya","doi":"10.1016/j.bbabio.2025.149551","DOIUrl":null,"url":null,"abstract":"<div><div>The Na<sup>+</sup>-translocating NADH-ubiquinone oxidoreductase (Na<sup>+</sup>-NQR) is a key enzyme in the respiratory chain of numerous pathogenic bacteria, including <em>Vibrio cholerae</em>. The flexible cytoplasmic <em>N</em>-terminal region of the NqrB subunit (Met<sup>1</sup>–Lys<sup>54</sup>), which may play an important role in the final UQ reduction at the adjacent NqrA, is the target of specific inhibitors. If we can develop a new method that enables pinpoint introduction of functional probe molecules (such as fluorescent probes) into the <em>N</em>-terminal region, this could lead to new experimental ways of monitoring dynamic structural changes of the region. We previously showed that an electrophilic chemical group, which can be released from korormicin A-templated synthetic ligand, can be predominantly introduced into nucleophilic Lys<sup>22</sup> as a “foothold” via ligand-directed (LD) substitution, but the subsequent conjugation of a functional probe molecule to the foothold by Cu<sup>+</sup>-catalyzed click chemistry required destruction of the enzyme. Accordingly, we now report the nondestructive conjugation of the functional molecule into the <em>N</em>-terminal region via a two-step conjugation technique: first, pinpoint introduction of a foothold tag containing a ring-strained cyclopropene by LD substitution using a new korormicin A-templated ligand (BEK-1) and second, direct conjugation of a fluorescent probe molecule containing tetrazine with the introduced cyclopropene by inverse electron-demand Diels-Alder-type click chemistry. Protein sequence analyses revealed that the fluorescent probe is attached to Lys<sup>19</sup>, His<sup>20</sup>, or Lys<sup>22</sup> in the region. The extent of conjugation of the fluorescent probe was approximately halved in the presence of different inhibitors, suggesting that the inhibitor binding induces structural changes around the residues.</div></div>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 2","pages":"Article 149551"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pinpoint introduction of functional molecular probe into the NqrB subunit of Na+-translocating NADH-ubiquinone oxidoreductase from Vibrio cholerae\",\"authors\":\"Saya Miyachi , Hinako Tanaka , Moe Ishikawa , Danielle Mcfee , Wataru Aoki , Masatoshi Murai , Blanca Barquera , Hideto Miyoshi , Takahiro Masuya\",\"doi\":\"10.1016/j.bbabio.2025.149551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Na<sup>+</sup>-translocating NADH-ubiquinone oxidoreductase (Na<sup>+</sup>-NQR) is a key enzyme in the respiratory chain of numerous pathogenic bacteria, including <em>Vibrio cholerae</em>. The flexible cytoplasmic <em>N</em>-terminal region of the NqrB subunit (Met<sup>1</sup>–Lys<sup>54</sup>), which may play an important role in the final UQ reduction at the adjacent NqrA, is the target of specific inhibitors. If we can develop a new method that enables pinpoint introduction of functional probe molecules (such as fluorescent probes) into the <em>N</em>-terminal region, this could lead to new experimental ways of monitoring dynamic structural changes of the region. We previously showed that an electrophilic chemical group, which can be released from korormicin A-templated synthetic ligand, can be predominantly introduced into nucleophilic Lys<sup>22</sup> as a “foothold” via ligand-directed (LD) substitution, but the subsequent conjugation of a functional probe molecule to the foothold by Cu<sup>+</sup>-catalyzed click chemistry required destruction of the enzyme. Accordingly, we now report the nondestructive conjugation of the functional molecule into the <em>N</em>-terminal region via a two-step conjugation technique: first, pinpoint introduction of a foothold tag containing a ring-strained cyclopropene by LD substitution using a new korormicin A-templated ligand (BEK-1) and second, direct conjugation of a fluorescent probe molecule containing tetrazine with the introduced cyclopropene by inverse electron-demand Diels-Alder-type click chemistry. Protein sequence analyses revealed that the fluorescent probe is attached to Lys<sup>19</sup>, His<sup>20</sup>, or Lys<sup>22</sup> in the region. The extent of conjugation of the fluorescent probe was approximately halved in the presence of different inhibitors, suggesting that the inhibitor binding induces structural changes around the residues.</div></div>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\"1866 2\",\"pages\":\"Article 149551\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005272825000179\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272825000179","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pinpoint introduction of functional molecular probe into the NqrB subunit of Na+-translocating NADH-ubiquinone oxidoreductase from Vibrio cholerae
The Na+-translocating NADH-ubiquinone oxidoreductase (Na+-NQR) is a key enzyme in the respiratory chain of numerous pathogenic bacteria, including Vibrio cholerae. The flexible cytoplasmic N-terminal region of the NqrB subunit (Met1–Lys54), which may play an important role in the final UQ reduction at the adjacent NqrA, is the target of specific inhibitors. If we can develop a new method that enables pinpoint introduction of functional probe molecules (such as fluorescent probes) into the N-terminal region, this could lead to new experimental ways of monitoring dynamic structural changes of the region. We previously showed that an electrophilic chemical group, which can be released from korormicin A-templated synthetic ligand, can be predominantly introduced into nucleophilic Lys22 as a “foothold” via ligand-directed (LD) substitution, but the subsequent conjugation of a functional probe molecule to the foothold by Cu+-catalyzed click chemistry required destruction of the enzyme. Accordingly, we now report the nondestructive conjugation of the functional molecule into the N-terminal region via a two-step conjugation technique: first, pinpoint introduction of a foothold tag containing a ring-strained cyclopropene by LD substitution using a new korormicin A-templated ligand (BEK-1) and second, direct conjugation of a fluorescent probe molecule containing tetrazine with the introduced cyclopropene by inverse electron-demand Diels-Alder-type click chemistry. Protein sequence analyses revealed that the fluorescent probe is attached to Lys19, His20, or Lys22 in the region. The extent of conjugation of the fluorescent probe was approximately halved in the presence of different inhibitors, suggesting that the inhibitor binding induces structural changes around the residues.
期刊介绍:
BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.