集成通用目标跟踪和分割与姿态估计的动物行为分析。

IF 4.7 1区 生物学 Q1 ZOOLOGY
Hao Zhai, Hai-Yang Yan, Jing-Yuan Zhou, Jing Liu, Qi-Wei Xie, Li-Jun Shen, Xi Chen, Hua Han
{"title":"集成通用目标跟踪和分割与姿态估计的动物行为分析。","authors":"Hao Zhai, Hai-Yang Yan, Jing-Yuan Zhou, Jing Liu, Qi-Wei Xie, Li-Jun Shen, Xi Chen, Hua Han","doi":"10.24272/j.issn.2095-8137.2024.268","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in animal behavior quantification methods have driven the development of computational ethology, enabling fully automated behavior analysis. Existing multi-animal pose estimation workflows rely on tracking-by-detection frameworks for either bottom-up or top-down approaches, requiring retraining to accommodate diverse animal appearances. This study introduces InteBOMB, an integrated workflow that enhances top-down approaches by incorporating generic object tracking, eliminating the need for prior knowledge of target animals while maintaining broad generalizability. InteBOMB includes two key strategies for tracking and segmentation in laboratory environments and two techniques for pose estimation in natural settings. The \"background enhancement\" strategy optimizes foreground-background contrastive loss, generating more discriminative correlation maps. The \"online proofreading\" strategy stores human-in-the-loop long-term memory and dynamic short-term memory, enabling adaptive updates to object visual features. The \"automated labeling suggestion\" technique reuses the visual features saved during tracking to identify representative frames for training set labeling. Additionally, the \"joint behavior analysis\" technique integrates these features with multimodal data, expanding the latent space for behavior classification and clustering. To evaluate the framework, six datasets of mice and six datasets of non-human primates were compiled, covering laboratory and natural scenes. Benchmarking results demonstrated a 24% improvement in zero-shot generic tracking and a 21% enhancement in joint latent space performance across datasets, highlighting the effectiveness of this approach in robust, generalizable behavior analysis.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 2","pages":"355-369"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000140/pdf/","citationCount":"0","resultStr":"{\"title\":\"InteBOMB: Integrating generic object tracking and segmentation with pose estimation for animal behavior analysis.\",\"authors\":\"Hao Zhai, Hai-Yang Yan, Jing-Yuan Zhou, Jing Liu, Qi-Wei Xie, Li-Jun Shen, Xi Chen, Hua Han\",\"doi\":\"10.24272/j.issn.2095-8137.2024.268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in animal behavior quantification methods have driven the development of computational ethology, enabling fully automated behavior analysis. Existing multi-animal pose estimation workflows rely on tracking-by-detection frameworks for either bottom-up or top-down approaches, requiring retraining to accommodate diverse animal appearances. This study introduces InteBOMB, an integrated workflow that enhances top-down approaches by incorporating generic object tracking, eliminating the need for prior knowledge of target animals while maintaining broad generalizability. InteBOMB includes two key strategies for tracking and segmentation in laboratory environments and two techniques for pose estimation in natural settings. The \\\"background enhancement\\\" strategy optimizes foreground-background contrastive loss, generating more discriminative correlation maps. The \\\"online proofreading\\\" strategy stores human-in-the-loop long-term memory and dynamic short-term memory, enabling adaptive updates to object visual features. The \\\"automated labeling suggestion\\\" technique reuses the visual features saved during tracking to identify representative frames for training set labeling. Additionally, the \\\"joint behavior analysis\\\" technique integrates these features with multimodal data, expanding the latent space for behavior classification and clustering. To evaluate the framework, six datasets of mice and six datasets of non-human primates were compiled, covering laboratory and natural scenes. Benchmarking results demonstrated a 24% improvement in zero-shot generic tracking and a 21% enhancement in joint latent space performance across datasets, highlighting the effectiveness of this approach in robust, generalizable behavior analysis.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"46 2\",\"pages\":\"355-369\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2024.268\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.268","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动物行为量化方法的进步推动了计算行为学的发展,使完全自动化的行为分析成为可能。现有的多动物姿态估计工作流程依赖于自下而上或自上而下方法的检测跟踪框架,需要重新训练以适应不同的动物外观。本研究引入了集成工作流InteBOMB,该工作流通过整合通用目标跟踪来增强自顶向下的方法,消除了对目标动物先验知识的需求,同时保持了广泛的通用性。InteBOMB包括实验室环境中跟踪和分割的两个关键策略和自然环境中姿态估计的两个技术。“背景增强”策略优化前景背景对比损失,产生更多的判别相关图。“在线校对”策略存储了人类在循环中的长期记忆和动态短期记忆,从而实现了对物体视觉特征的自适应更新。“自动标记建议”技术重用跟踪过程中保存的视觉特征来识别训练集标记的代表性帧。此外,“联合行为分析”技术将这些特征与多模态数据相结合,扩大了行为分类和聚类的潜在空间。为了评估该框架,我们编译了6个小鼠数据集和6个非人类灵长类数据集,涵盖了实验室和自然场景。基准测试结果表明,零射击通用跟踪提高了24%,跨数据集的联合潜在空间性能提高了21%,突出了该方法在稳健、可推广的行为分析中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
InteBOMB: Integrating generic object tracking and segmentation with pose estimation for animal behavior analysis.

Advancements in animal behavior quantification methods have driven the development of computational ethology, enabling fully automated behavior analysis. Existing multi-animal pose estimation workflows rely on tracking-by-detection frameworks for either bottom-up or top-down approaches, requiring retraining to accommodate diverse animal appearances. This study introduces InteBOMB, an integrated workflow that enhances top-down approaches by incorporating generic object tracking, eliminating the need for prior knowledge of target animals while maintaining broad generalizability. InteBOMB includes two key strategies for tracking and segmentation in laboratory environments and two techniques for pose estimation in natural settings. The "background enhancement" strategy optimizes foreground-background contrastive loss, generating more discriminative correlation maps. The "online proofreading" strategy stores human-in-the-loop long-term memory and dynamic short-term memory, enabling adaptive updates to object visual features. The "automated labeling suggestion" technique reuses the visual features saved during tracking to identify representative frames for training set labeling. Additionally, the "joint behavior analysis" technique integrates these features with multimodal data, expanding the latent space for behavior classification and clustering. To evaluate the framework, six datasets of mice and six datasets of non-human primates were compiled, covering laboratory and natural scenes. Benchmarking results demonstrated a 24% improvement in zero-shot generic tracking and a 21% enhancement in joint latent space performance across datasets, highlighting the effectiveness of this approach in robust, generalizable behavior analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信