Sydney Banton, Shari Raheb, Pawanpreet Singh, John P Cant, Anna K Shoveller
{"title":"与两种不同的中等蛋白质、中等碳水化合物饮食相比,饲喂高蛋白、低碳水化合物饮食的狗餐后血浆胰高血糖素和氨基酸浓度升高,葡萄糖浓度往往较低。","authors":"Sydney Banton, Shari Raheb, Pawanpreet Singh, John P Cant, Anna K Shoveller","doi":"10.1093/tas/txaf017","DOIUrl":null,"url":null,"abstract":"<p><p>As dog owners continue to seek to feed their dogs similarly to themselves, there is demand for high protein, low carbohydrate (HPLC) diets. The consumption of HPLC diets can improve glycemic control, similarly to high fiber diets. However, the effects of HPLC and high fiber diets on cardiac function have yet to be evaluated in healthy dogs. The objective of the present study was to investigate the glucose, insulin, glucagon and amino acid (AA) postprandial response and echocardiographic measurements in laboratory-housed, adult large breed dogs fed a commercially available HPLC, a moderate protein, moderate carbohydrate (MPMC), or a commercially available MPMC, high fiber, \"metabolic\" diet for 42 d. This study was conducted as a 3 × 3 Latin square where dogs received: 1) a commercial HPLC diet (48% of metabolizable energy (ME) from protein, 10% of ME from nitrogen-free extract; NFE), 2) a MPMC diet (28% of ME from protein, 39% of ME from NFE) formulated with the same ingredients as HPLC or 3) a MPMC, high fiber, \"metabolic\" (MET) diet (30% of ME from protein, 37% of ME from NFE) as a commercial control. An echocardiogram and a 12-h glucose, insulin and glucagon response and 6-h AA meal response were performed on day 42 of feeding. Data were analyzed using proc glimmix in SAS (version 9.4). All echocardiographic parameters remained within a healthy reference range for dogs of this size. Dogs fed HPLC had a larger net area under the curve (NetAUC) for plasma glucagon (P < 0.001) compared to dogs fed MPMC and MET, a smaller NetAUC for glucose: insulin (P = 0.039) compared to dogs fed MPMC but MET was similar to both. Glucose NetAUC tended to be different among treatments (P = 0.057), where dogs fed MPMC had a greater netAUC than dogs fed HPLC and dogs fed MET tended to have a greater netAUC than HPLC. Dogs fed HPLC had greater concentrations of Ile, Leu, Lys, Thr, Tyr and Val over time compared to dogs fed MPMC and MET, and dogs fed MET had greater concentrations of Gln and Met over time compared to dogs fed HPLC and MPMC (P < 0.05). Dogs fed a HPLC diet may have improved glucose uptake compared to dogs fed a MPMC diet. This research provides the first insight into the cardiometabolic health of dogs consuming three diets differing in their protein, carbohydrate and fiber content.</p>","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":"9 ","pages":"txaf017"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dogs fed a high protein, low carbohydrate diet have elevated postprandial plasma glucagon and amino acid concentrations and tend to have lower glucose concentrations compared to two different moderate protein, moderate carbohydrate diets.\",\"authors\":\"Sydney Banton, Shari Raheb, Pawanpreet Singh, John P Cant, Anna K Shoveller\",\"doi\":\"10.1093/tas/txaf017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As dog owners continue to seek to feed their dogs similarly to themselves, there is demand for high protein, low carbohydrate (HPLC) diets. The consumption of HPLC diets can improve glycemic control, similarly to high fiber diets. However, the effects of HPLC and high fiber diets on cardiac function have yet to be evaluated in healthy dogs. The objective of the present study was to investigate the glucose, insulin, glucagon and amino acid (AA) postprandial response and echocardiographic measurements in laboratory-housed, adult large breed dogs fed a commercially available HPLC, a moderate protein, moderate carbohydrate (MPMC), or a commercially available MPMC, high fiber, \\\"metabolic\\\" diet for 42 d. This study was conducted as a 3 × 3 Latin square where dogs received: 1) a commercial HPLC diet (48% of metabolizable energy (ME) from protein, 10% of ME from nitrogen-free extract; NFE), 2) a MPMC diet (28% of ME from protein, 39% of ME from NFE) formulated with the same ingredients as HPLC or 3) a MPMC, high fiber, \\\"metabolic\\\" (MET) diet (30% of ME from protein, 37% of ME from NFE) as a commercial control. An echocardiogram and a 12-h glucose, insulin and glucagon response and 6-h AA meal response were performed on day 42 of feeding. Data were analyzed using proc glimmix in SAS (version 9.4). All echocardiographic parameters remained within a healthy reference range for dogs of this size. Dogs fed HPLC had a larger net area under the curve (NetAUC) for plasma glucagon (P < 0.001) compared to dogs fed MPMC and MET, a smaller NetAUC for glucose: insulin (P = 0.039) compared to dogs fed MPMC but MET was similar to both. Glucose NetAUC tended to be different among treatments (P = 0.057), where dogs fed MPMC had a greater netAUC than dogs fed HPLC and dogs fed MET tended to have a greater netAUC than HPLC. Dogs fed HPLC had greater concentrations of Ile, Leu, Lys, Thr, Tyr and Val over time compared to dogs fed MPMC and MET, and dogs fed MET had greater concentrations of Gln and Met over time compared to dogs fed HPLC and MPMC (P < 0.05). Dogs fed a HPLC diet may have improved glucose uptake compared to dogs fed a MPMC diet. This research provides the first insight into the cardiometabolic health of dogs consuming three diets differing in their protein, carbohydrate and fiber content.</p>\",\"PeriodicalId\":23272,\"journal\":{\"name\":\"Translational Animal Science\",\"volume\":\"9 \",\"pages\":\"txaf017\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/tas/txaf017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txaf017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Dogs fed a high protein, low carbohydrate diet have elevated postprandial plasma glucagon and amino acid concentrations and tend to have lower glucose concentrations compared to two different moderate protein, moderate carbohydrate diets.
As dog owners continue to seek to feed their dogs similarly to themselves, there is demand for high protein, low carbohydrate (HPLC) diets. The consumption of HPLC diets can improve glycemic control, similarly to high fiber diets. However, the effects of HPLC and high fiber diets on cardiac function have yet to be evaluated in healthy dogs. The objective of the present study was to investigate the glucose, insulin, glucagon and amino acid (AA) postprandial response and echocardiographic measurements in laboratory-housed, adult large breed dogs fed a commercially available HPLC, a moderate protein, moderate carbohydrate (MPMC), or a commercially available MPMC, high fiber, "metabolic" diet for 42 d. This study was conducted as a 3 × 3 Latin square where dogs received: 1) a commercial HPLC diet (48% of metabolizable energy (ME) from protein, 10% of ME from nitrogen-free extract; NFE), 2) a MPMC diet (28% of ME from protein, 39% of ME from NFE) formulated with the same ingredients as HPLC or 3) a MPMC, high fiber, "metabolic" (MET) diet (30% of ME from protein, 37% of ME from NFE) as a commercial control. An echocardiogram and a 12-h glucose, insulin and glucagon response and 6-h AA meal response were performed on day 42 of feeding. Data were analyzed using proc glimmix in SAS (version 9.4). All echocardiographic parameters remained within a healthy reference range for dogs of this size. Dogs fed HPLC had a larger net area under the curve (NetAUC) for plasma glucagon (P < 0.001) compared to dogs fed MPMC and MET, a smaller NetAUC for glucose: insulin (P = 0.039) compared to dogs fed MPMC but MET was similar to both. Glucose NetAUC tended to be different among treatments (P = 0.057), where dogs fed MPMC had a greater netAUC than dogs fed HPLC and dogs fed MET tended to have a greater netAUC than HPLC. Dogs fed HPLC had greater concentrations of Ile, Leu, Lys, Thr, Tyr and Val over time compared to dogs fed MPMC and MET, and dogs fed MET had greater concentrations of Gln and Met over time compared to dogs fed HPLC and MPMC (P < 0.05). Dogs fed a HPLC diet may have improved glucose uptake compared to dogs fed a MPMC diet. This research provides the first insight into the cardiometabolic health of dogs consuming three diets differing in their protein, carbohydrate and fiber content.
期刊介绍:
Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.