与两种不同的中等蛋白质、中等碳水化合物饮食相比,饲喂高蛋白、低碳水化合物饮食的狗餐后血浆胰高血糖素和氨基酸浓度升高,葡萄糖浓度往往较低。

IF 1.3 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Translational Animal Science Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.1093/tas/txaf017
Sydney Banton, Shari Raheb, Pawanpreet Singh, John P Cant, Anna K Shoveller
{"title":"与两种不同的中等蛋白质、中等碳水化合物饮食相比,饲喂高蛋白、低碳水化合物饮食的狗餐后血浆胰高血糖素和氨基酸浓度升高,葡萄糖浓度往往较低。","authors":"Sydney Banton, Shari Raheb, Pawanpreet Singh, John P Cant, Anna K Shoveller","doi":"10.1093/tas/txaf017","DOIUrl":null,"url":null,"abstract":"<p><p>As dog owners continue to seek to feed their dogs similarly to themselves, there is demand for high protein, low carbohydrate (HPLC) diets. The consumption of HPLC diets can improve glycemic control, similarly to high fiber diets. However, the effects of HPLC and high fiber diets on cardiac function have yet to be evaluated in healthy dogs. The objective of the present study was to investigate the glucose, insulin, glucagon and amino acid (AA) postprandial response and echocardiographic measurements in laboratory-housed, adult large breed dogs fed a commercially available HPLC, a moderate protein, moderate carbohydrate (MPMC), or a commercially available MPMC, high fiber, \"metabolic\" diet for 42 d. This study was conducted as a 3 × 3 Latin square where dogs received: 1) a commercial HPLC diet (48% of metabolizable energy (ME) from protein, 10% of ME from nitrogen-free extract; NFE), 2) a MPMC diet (28% of ME from protein, 39% of ME from NFE) formulated with the same ingredients as HPLC or 3) a MPMC, high fiber, \"metabolic\" (MET) diet (30% of ME from protein, 37% of ME from NFE) as a commercial control. An echocardiogram and a 12-h glucose, insulin and glucagon response and 6-h AA meal response were performed on day 42 of feeding. Data were analyzed using proc glimmix in SAS (version 9.4). All echocardiographic parameters remained within a healthy reference range for dogs of this size. Dogs fed HPLC had a larger net area under the curve (NetAUC) for plasma glucagon (P < 0.001) compared to dogs fed MPMC and MET, a smaller NetAUC for glucose: insulin (P = 0.039) compared to dogs fed MPMC but MET was similar to both. Glucose NetAUC tended to be different among treatments (P = 0.057), where dogs fed MPMC had a greater netAUC than dogs fed HPLC and dogs fed MET tended to have a greater netAUC than HPLC. Dogs fed HPLC had greater concentrations of Ile, Leu, Lys, Thr, Tyr and Val over time compared to dogs fed MPMC and MET, and dogs fed MET had greater concentrations of Gln and Met over time compared to dogs fed HPLC and MPMC (P < 0.05). Dogs fed a HPLC diet may have improved glucose uptake compared to dogs fed a MPMC diet. This research provides the first insight into the cardiometabolic health of dogs consuming three diets differing in their protein, carbohydrate and fiber content.</p>","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":"9 ","pages":"txaf017"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dogs fed a high protein, low carbohydrate diet have elevated postprandial plasma glucagon and amino acid concentrations and tend to have lower glucose concentrations compared to two different moderate protein, moderate carbohydrate diets.\",\"authors\":\"Sydney Banton, Shari Raheb, Pawanpreet Singh, John P Cant, Anna K Shoveller\",\"doi\":\"10.1093/tas/txaf017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As dog owners continue to seek to feed their dogs similarly to themselves, there is demand for high protein, low carbohydrate (HPLC) diets. The consumption of HPLC diets can improve glycemic control, similarly to high fiber diets. However, the effects of HPLC and high fiber diets on cardiac function have yet to be evaluated in healthy dogs. The objective of the present study was to investigate the glucose, insulin, glucagon and amino acid (AA) postprandial response and echocardiographic measurements in laboratory-housed, adult large breed dogs fed a commercially available HPLC, a moderate protein, moderate carbohydrate (MPMC), or a commercially available MPMC, high fiber, \\\"metabolic\\\" diet for 42 d. This study was conducted as a 3 × 3 Latin square where dogs received: 1) a commercial HPLC diet (48% of metabolizable energy (ME) from protein, 10% of ME from nitrogen-free extract; NFE), 2) a MPMC diet (28% of ME from protein, 39% of ME from NFE) formulated with the same ingredients as HPLC or 3) a MPMC, high fiber, \\\"metabolic\\\" (MET) diet (30% of ME from protein, 37% of ME from NFE) as a commercial control. An echocardiogram and a 12-h glucose, insulin and glucagon response and 6-h AA meal response were performed on day 42 of feeding. Data were analyzed using proc glimmix in SAS (version 9.4). All echocardiographic parameters remained within a healthy reference range for dogs of this size. Dogs fed HPLC had a larger net area under the curve (NetAUC) for plasma glucagon (P < 0.001) compared to dogs fed MPMC and MET, a smaller NetAUC for glucose: insulin (P = 0.039) compared to dogs fed MPMC but MET was similar to both. Glucose NetAUC tended to be different among treatments (P = 0.057), where dogs fed MPMC had a greater netAUC than dogs fed HPLC and dogs fed MET tended to have a greater netAUC than HPLC. Dogs fed HPLC had greater concentrations of Ile, Leu, Lys, Thr, Tyr and Val over time compared to dogs fed MPMC and MET, and dogs fed MET had greater concentrations of Gln and Met over time compared to dogs fed HPLC and MPMC (P < 0.05). Dogs fed a HPLC diet may have improved glucose uptake compared to dogs fed a MPMC diet. This research provides the first insight into the cardiometabolic health of dogs consuming three diets differing in their protein, carbohydrate and fiber content.</p>\",\"PeriodicalId\":23272,\"journal\":{\"name\":\"Translational Animal Science\",\"volume\":\"9 \",\"pages\":\"txaf017\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/tas/txaf017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txaf017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着狗主人继续寻求以类似于自己的方式喂养狗,人们对高蛋白、低碳水化合物(HPLC)的饮食有了需求。与高纤维饮食一样,食用HPLC饮食可以改善血糖控制。然而,HPLC和高纤维饮食对健康犬心脏功能的影响尚未得到评估。本研究的目的是研究实验室饲养的成年大型犬的血糖、胰岛素、胰高血糖素和氨基酸(AA)餐后反应和超声心动图测量结果,这些大型犬喂食市售高效液相色谱、中等蛋白质、中等碳水化合物(MPMC)或市售MPMC、高纤维“代谢”饮食42 d。本研究采用3 × 3拉丁方图进行,其中狗接受:1)商业高效液相色谱饲粮(48%代谢能来自蛋白质,10%代谢能来自无氮提取物;2)与HPLC成分相同的MPMC饲粮(28%的代谢能来自蛋白质,39%的代谢能来自NFE)或3)MPMC、高纤维、“代谢”(MET)饲粮(30%的代谢能来自蛋白质,37%的代谢能来自NFE)作为商业对照。在饲喂第42天进行超声心动图和12小时血糖、胰岛素和胰高血糖素反应以及6小时AA餐反应。使用SAS(9.4版)中的proc glimmix分析数据。所有超声心动图参数保持在健康的参考范围内的狗的这种大小。饲喂HPLC的狗血浆胰高血糖素曲线下净面积(NetAUC)较大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dogs fed a high protein, low carbohydrate diet have elevated postprandial plasma glucagon and amino acid concentrations and tend to have lower glucose concentrations compared to two different moderate protein, moderate carbohydrate diets.

As dog owners continue to seek to feed their dogs similarly to themselves, there is demand for high protein, low carbohydrate (HPLC) diets. The consumption of HPLC diets can improve glycemic control, similarly to high fiber diets. However, the effects of HPLC and high fiber diets on cardiac function have yet to be evaluated in healthy dogs. The objective of the present study was to investigate the glucose, insulin, glucagon and amino acid (AA) postprandial response and echocardiographic measurements in laboratory-housed, adult large breed dogs fed a commercially available HPLC, a moderate protein, moderate carbohydrate (MPMC), or a commercially available MPMC, high fiber, "metabolic" diet for 42 d. This study was conducted as a 3 × 3 Latin square where dogs received: 1) a commercial HPLC diet (48% of metabolizable energy (ME) from protein, 10% of ME from nitrogen-free extract; NFE), 2) a MPMC diet (28% of ME from protein, 39% of ME from NFE) formulated with the same ingredients as HPLC or 3) a MPMC, high fiber, "metabolic" (MET) diet (30% of ME from protein, 37% of ME from NFE) as a commercial control. An echocardiogram and a 12-h glucose, insulin and glucagon response and 6-h AA meal response were performed on day 42 of feeding. Data were analyzed using proc glimmix in SAS (version 9.4). All echocardiographic parameters remained within a healthy reference range for dogs of this size. Dogs fed HPLC had a larger net area under the curve (NetAUC) for plasma glucagon (P < 0.001) compared to dogs fed MPMC and MET, a smaller NetAUC for glucose: insulin (P = 0.039) compared to dogs fed MPMC but MET was similar to both. Glucose NetAUC tended to be different among treatments (P = 0.057), where dogs fed MPMC had a greater netAUC than dogs fed HPLC and dogs fed MET tended to have a greater netAUC than HPLC. Dogs fed HPLC had greater concentrations of Ile, Leu, Lys, Thr, Tyr and Val over time compared to dogs fed MPMC and MET, and dogs fed MET had greater concentrations of Gln and Met over time compared to dogs fed HPLC and MPMC (P < 0.05). Dogs fed a HPLC diet may have improved glucose uptake compared to dogs fed a MPMC diet. This research provides the first insight into the cardiometabolic health of dogs consuming three diets differing in their protein, carbohydrate and fiber content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational Animal Science
Translational Animal Science Veterinary-Veterinary (all)
CiteScore
2.80
自引率
15.40%
发文量
149
审稿时长
8 weeks
期刊介绍: Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信