超级增强子衍生的cpox pre-mRNA在调节邻近基因表达和染色质相互作用中的非编码功能。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-03-12 DOI:10.1080/15476286.2025.2475421
Bingning Xie, Ann Dean
{"title":"超级增强子衍生的cpox pre-mRNA在调节邻近基因表达和染色质相互作用中的非编码功能。","authors":"Bingning Xie, Ann Dean","doi":"10.1080/15476286.2025.2475421","DOIUrl":null,"url":null,"abstract":"<p><p>Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the RNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the <i>Cpox</i> gene as a model, <i>Cpox</i> pre-mRNA is found to have a non-coding function in regulating neighbouring protein-coding genes, eRNA expression and TAD interactions. Depletion of <i>Cpox</i> pre-mRNA leads to accumulation of H3K27me3 and release of p300 from the <i>Cpox</i> locus, activating an intra-TAD enhancer and gene expression. Additionally, a head-to-tail interaction between the TAD boundary genes <i>Cpox</i> and <i>Dcbld2</i> is identified, facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. These results uncover a regulatory role for pre-mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-17"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913378/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noncoding function of super enhancer derived <i>Cpox</i> pre-mRNA in modulating neighbouring gene expression and chromatin interactions.\",\"authors\":\"Bingning Xie, Ann Dean\",\"doi\":\"10.1080/15476286.2025.2475421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the RNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the <i>Cpox</i> gene as a model, <i>Cpox</i> pre-mRNA is found to have a non-coding function in regulating neighbouring protein-coding genes, eRNA expression and TAD interactions. Depletion of <i>Cpox</i> pre-mRNA leads to accumulation of H3K27me3 and release of p300 from the <i>Cpox</i> locus, activating an intra-TAD enhancer and gene expression. Additionally, a head-to-tail interaction between the TAD boundary genes <i>Cpox</i> and <i>Dcbld2</i> is identified, facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. These results uncover a regulatory role for pre-mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913378/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2025.2475421\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2475421","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

超级增强子是基因表达的重要调控因子,通常与蛋白质编码基因重叠。然而,目前尚不清楚重叠的蛋白质编码基因及其衍生的RNA是否有助于增强子的活性。利用与c痘基因重叠的红细胞特异性超增强子作为模型,发现c痘pre-mRNA在调节邻近蛋白编码基因、eRNA表达和TAD相互作用方面具有非编码功能。c痘pre-mRNA的缺失导致H3K27me3的积累和p300从c痘位点释放,激活tad内增强子和基因表达。此外,通过p300和PRC2/H3K27me3锚定的新型抑制环促进了TAD边界基因Cpox和Dcbld2之间的头尾相互作用。这些结果揭示了在超级增强子环境中转录的pre-mRNA的调控作用,并为基因表达和癌基因激活调控中的头尾基因间相互作用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncoding function of super enhancer derived Cpox pre-mRNA in modulating neighbouring gene expression and chromatin interactions.

Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the RNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the Cpox gene as a model, Cpox pre-mRNA is found to have a non-coding function in regulating neighbouring protein-coding genes, eRNA expression and TAD interactions. Depletion of Cpox pre-mRNA leads to accumulation of H3K27me3 and release of p300 from the Cpox locus, activating an intra-TAD enhancer and gene expression. Additionally, a head-to-tail interaction between the TAD boundary genes Cpox and Dcbld2 is identified, facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. These results uncover a regulatory role for pre-mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信