{"title":"卵巢刺激促进基底卵泡生长。","authors":"Masao Jinno","doi":"10.1186/s12958-025-01356-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Most methods of ovarian stimulation rely on gonadotropin modulation. However, abnormal anti-Müllerian hormone concentrations are frequent in infertility, suggesting that defects in the gonadotropin-independent period of folliculogenesis preceding cyclic recruitment (i.e., basal follicular growth) may often occur. We need to better understand basal follicular growth and determine how to improve it.</p><p><strong>Methods: </strong>Section I summarizes a literature search concerning preantral and early antral folliculogenesis, cyclic recruitment, and selection. Section II presents current knowledge about interventions involving early antral folliculogenesis and cyclic recruitment.</p><p><strong>Results: </strong>While folliculogenesis following cyclic recruitment is gonadotropin-dependent, basal follicular growth is not. Basal follicular growth is regulated by follicle-stimulating hormone and local communication between the oocyte and its granulosa and thecal cells involving gap junctions and many autocrine/paracrine factors. This local communication sustains growth synergistically with follicle-stimulating hormone, but also suppresses this hormone to induce granulosa cell differentiation. As a follicle develops, its responsiveness to gonadotropin progressively increases. Section II describes 4 interventions affecting early antral folliculogenesis, including granulocyte colony-stimulating factor priming, bromocriptine rebound, carbohydrate metabolism intervention, and danazol priming, which have improved embryo development and live birth rate in patients with previous failures.</p><p><strong>Conclusion: </strong>Basal follicular growth modulation can increase live birth rates.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"23 1","pages":"35"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884117/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ovarian stimulation by promoting basal follicular growth.\",\"authors\":\"Masao Jinno\",\"doi\":\"10.1186/s12958-025-01356-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Most methods of ovarian stimulation rely on gonadotropin modulation. However, abnormal anti-Müllerian hormone concentrations are frequent in infertility, suggesting that defects in the gonadotropin-independent period of folliculogenesis preceding cyclic recruitment (i.e., basal follicular growth) may often occur. We need to better understand basal follicular growth and determine how to improve it.</p><p><strong>Methods: </strong>Section I summarizes a literature search concerning preantral and early antral folliculogenesis, cyclic recruitment, and selection. Section II presents current knowledge about interventions involving early antral folliculogenesis and cyclic recruitment.</p><p><strong>Results: </strong>While folliculogenesis following cyclic recruitment is gonadotropin-dependent, basal follicular growth is not. Basal follicular growth is regulated by follicle-stimulating hormone and local communication between the oocyte and its granulosa and thecal cells involving gap junctions and many autocrine/paracrine factors. This local communication sustains growth synergistically with follicle-stimulating hormone, but also suppresses this hormone to induce granulosa cell differentiation. As a follicle develops, its responsiveness to gonadotropin progressively increases. Section II describes 4 interventions affecting early antral folliculogenesis, including granulocyte colony-stimulating factor priming, bromocriptine rebound, carbohydrate metabolism intervention, and danazol priming, which have improved embryo development and live birth rate in patients with previous failures.</p><p><strong>Conclusion: </strong>Basal follicular growth modulation can increase live birth rates.</p>\",\"PeriodicalId\":21011,\"journal\":{\"name\":\"Reproductive Biology and Endocrinology\",\"volume\":\"23 1\",\"pages\":\"35\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884117/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive Biology and Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12958-025-01356-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Biology and Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12958-025-01356-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Ovarian stimulation by promoting basal follicular growth.
Background: Most methods of ovarian stimulation rely on gonadotropin modulation. However, abnormal anti-Müllerian hormone concentrations are frequent in infertility, suggesting that defects in the gonadotropin-independent period of folliculogenesis preceding cyclic recruitment (i.e., basal follicular growth) may often occur. We need to better understand basal follicular growth and determine how to improve it.
Methods: Section I summarizes a literature search concerning preantral and early antral folliculogenesis, cyclic recruitment, and selection. Section II presents current knowledge about interventions involving early antral folliculogenesis and cyclic recruitment.
Results: While folliculogenesis following cyclic recruitment is gonadotropin-dependent, basal follicular growth is not. Basal follicular growth is regulated by follicle-stimulating hormone and local communication between the oocyte and its granulosa and thecal cells involving gap junctions and many autocrine/paracrine factors. This local communication sustains growth synergistically with follicle-stimulating hormone, but also suppresses this hormone to induce granulosa cell differentiation. As a follicle develops, its responsiveness to gonadotropin progressively increases. Section II describes 4 interventions affecting early antral folliculogenesis, including granulocyte colony-stimulating factor priming, bromocriptine rebound, carbohydrate metabolism intervention, and danazol priming, which have improved embryo development and live birth rate in patients with previous failures.
Conclusion: Basal follicular growth modulation can increase live birth rates.
期刊介绍:
Reproductive Biology and Endocrinology publishes and disseminates high-quality results from excellent research in the reproductive sciences.
The journal publishes on topics covering gametogenesis, fertilization, early embryonic development, embryo-uterus interaction, reproductive development, pregnancy, uterine biology, endocrinology of reproduction, control of reproduction, reproductive immunology, neuroendocrinology, and veterinary and human reproductive medicine, including all vertebrate species.