植物中糖基肌醇磷酸神经酰胺水解磷脂酶D产肌醇聚糖的分离与定量方法。

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Majidul Islam, Rumana Yesmin Hasi, Yuta Umemura, Hide-Nori Tanaka, Yudai Kondo, Toshiki Ishikawa, Minoru Nagano, Hanif Ali, Ryushi Kawakami, Mutsumi Aihara, Tamotsu Tanaka
{"title":"植物中糖基肌醇磷酸神经酰胺水解磷脂酶D产肌醇聚糖的分离与定量方法。","authors":"Majidul Islam, Rumana Yesmin Hasi, Yuta Umemura, Hide-Nori Tanaka, Yudai Kondo, Toshiki Ishikawa, Minoru Nagano, Hanif Ali, Ryushi Kawakami, Mutsumi Aihara, Tamotsu Tanaka","doi":"10.1093/jb/mvaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylinositol phosphoceramide (GIPC) is the most abundant sphingolipids in plants. Previously, we found phospholipase D (PLD) activity that hydrolyzes GIPC to phytoceramide 1-phosphate (PCerP) in plants and revealed that GIPC-PLD activity is carried out by an enzyme encoded by non-specific phospholipase C3 (NPC3) gene. In this study, we established a method for isolation and quantification of inositol glycan (InoGly), a counterpart of PCerP produced from GIPC, using TLC imaging. We confirmed that Arabidopsis thaliana NPC3 protein and partially purified GIPC-PLD from cabbage produced InoGly in a similar amount to that of PCerP from purified GIPC. We applied our method to determination of InoGly present in plant tissues and found that it was present at 40-80 nmol/g (wet weight) in cabbage leaves, radish root and broccoli stem and increased to 80-120 nmol/g after homogenization of the tissues. Similar increases in PCerP and decreases in GIPC were observed after homogenization, indicating that InoGly and PCerP were produced from GIPC by GIPC-PLD activity in response to homogenization. We believe our method, which does not require a complicated process or large device, will contribute to a better understanding of GIPC metabolism and signalling in plants.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"387-394"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for isolation and quantification of inositol glycan produced by glycosylinositol phosphoceramide-hydrolysing phospholipase D in plants.\",\"authors\":\"Majidul Islam, Rumana Yesmin Hasi, Yuta Umemura, Hide-Nori Tanaka, Yudai Kondo, Toshiki Ishikawa, Minoru Nagano, Hanif Ali, Ryushi Kawakami, Mutsumi Aihara, Tamotsu Tanaka\",\"doi\":\"10.1093/jb/mvaf013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosylinositol phosphoceramide (GIPC) is the most abundant sphingolipids in plants. Previously, we found phospholipase D (PLD) activity that hydrolyzes GIPC to phytoceramide 1-phosphate (PCerP) in plants and revealed that GIPC-PLD activity is carried out by an enzyme encoded by non-specific phospholipase C3 (NPC3) gene. In this study, we established a method for isolation and quantification of inositol glycan (InoGly), a counterpart of PCerP produced from GIPC, using TLC imaging. We confirmed that Arabidopsis thaliana NPC3 protein and partially purified GIPC-PLD from cabbage produced InoGly in a similar amount to that of PCerP from purified GIPC. We applied our method to determination of InoGly present in plant tissues and found that it was present at 40-80 nmol/g (wet weight) in cabbage leaves, radish root and broccoli stem and increased to 80-120 nmol/g after homogenization of the tissues. Similar increases in PCerP and decreases in GIPC were observed after homogenization, indicating that InoGly and PCerP were produced from GIPC by GIPC-PLD activity in response to homogenization. We believe our method, which does not require a complicated process or large device, will contribute to a better understanding of GIPC metabolism and signalling in plants.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"387-394\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖基肌醇磷酸神经酰胺(GIPC)是植物中含量最丰富的鞘脂类。在此之前,我们在植物中发现了将GIPC水解为植物神经酰胺1-磷酸(PCerP)的磷脂酶D (PLD)活性,并发现GIPC-PLD活性是由非特异性磷脂酶C3 (NPC3)基因编码的酶实现的。在这项研究中,我们建立了一种分离和定量的方法肌醇聚糖(InoGly),从GIPC产生的PCerP的对应物,用薄层色谱成像。我们证实,拟南芥NPC3蛋白和部分纯化的GIPC- pld从白菜中产生的InoGly量与纯化的GIPC产生的PCerP量相似。我们将该方法应用于植物组织中InoGly的测定,发现在甘蓝叶、萝卜根和西兰花茎中InoGly的含量为40-80 nmol/g(湿wt.),组织匀浆后增加到80-120 nmol/g。匀浆后观察到PCerP的增加和GIPC的减少,表明GIPC- pld对匀浆的反应产生了InoGly和PCerP。我们相信我们的方法不需要复杂的过程或大型设备,将有助于更好地了解植物中GIPC的代谢和信号传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for isolation and quantification of inositol glycan produced by glycosylinositol phosphoceramide-hydrolysing phospholipase D in plants.

Glycosylinositol phosphoceramide (GIPC) is the most abundant sphingolipids in plants. Previously, we found phospholipase D (PLD) activity that hydrolyzes GIPC to phytoceramide 1-phosphate (PCerP) in plants and revealed that GIPC-PLD activity is carried out by an enzyme encoded by non-specific phospholipase C3 (NPC3) gene. In this study, we established a method for isolation and quantification of inositol glycan (InoGly), a counterpart of PCerP produced from GIPC, using TLC imaging. We confirmed that Arabidopsis thaliana NPC3 protein and partially purified GIPC-PLD from cabbage produced InoGly in a similar amount to that of PCerP from purified GIPC. We applied our method to determination of InoGly present in plant tissues and found that it was present at 40-80 nmol/g (wet weight) in cabbage leaves, radish root and broccoli stem and increased to 80-120 nmol/g after homogenization of the tissues. Similar increases in PCerP and decreases in GIPC were observed after homogenization, indicating that InoGly and PCerP were produced from GIPC by GIPC-PLD activity in response to homogenization. We believe our method, which does not require a complicated process or large device, will contribute to a better understanding of GIPC metabolism and signalling in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信