{"title":"基于静息状态脑电图的相干性和卷积神经网络对阿尔茨海默病和额颞叶痴呆的分类。","authors":"Rundong Jiang, Xiaowei Zheng, Jiamin Sun, Lei Chen, Guanghua Xu, Rui Zhang","doi":"10.1007/s11571-025-10232-2","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to diagnose of Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) based on brain functional connectivity features extracted via resting-state Electroencephalographic (EEG) signals, and subsequently developed a convolutional neural network (CNN) model, Coherence-CNN, for classification. First, a publicly available dataset of EEG resting state-closed eye recordings containing 36 AD subjects, 23 FTD subjects, and 29 cognitively normal (CN) subjects was used. Then, coherence metrics were utilized to quantify brain functional connectivity, and the differences in coherence between groups across various frequency bands were investigated. Next, spectral clustering was used to analyze variations and differences in brain functional connectivity related to disease states, revealing distinct connectivity patterns in brain electrode position maps. The results demonstrated that brain functional connectivity between different regions was more robust in the CN group, while the AD and FTD groups exhibited various degrees of connectivity decline, reflecting the pronounced differences in connectivity patterns associated with each condition. Furthermore, Coherence-CNN was developed based on CNN and the feature of coherence for three-class classification, achieving a commendable accuracy of 94.32% through leave-one-out cross-validation. This study revealed that Coherence-CNN demonstrated significant performance for distinguishing AD, FTD, and CN groups, supporting the disorder of brain functional connectivity in AD and FTD.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"46"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification for Alzheimer's disease and frontotemporal dementia via resting-state electroencephalography-based coherence and convolutional neural network.\",\"authors\":\"Rundong Jiang, Xiaowei Zheng, Jiamin Sun, Lei Chen, Guanghua Xu, Rui Zhang\",\"doi\":\"10.1007/s11571-025-10232-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study aimed to diagnose of Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) based on brain functional connectivity features extracted via resting-state Electroencephalographic (EEG) signals, and subsequently developed a convolutional neural network (CNN) model, Coherence-CNN, for classification. First, a publicly available dataset of EEG resting state-closed eye recordings containing 36 AD subjects, 23 FTD subjects, and 29 cognitively normal (CN) subjects was used. Then, coherence metrics were utilized to quantify brain functional connectivity, and the differences in coherence between groups across various frequency bands were investigated. Next, spectral clustering was used to analyze variations and differences in brain functional connectivity related to disease states, revealing distinct connectivity patterns in brain electrode position maps. The results demonstrated that brain functional connectivity between different regions was more robust in the CN group, while the AD and FTD groups exhibited various degrees of connectivity decline, reflecting the pronounced differences in connectivity patterns associated with each condition. Furthermore, Coherence-CNN was developed based on CNN and the feature of coherence for three-class classification, achieving a commendable accuracy of 94.32% through leave-one-out cross-validation. This study revealed that Coherence-CNN demonstrated significant performance for distinguishing AD, FTD, and CN groups, supporting the disorder of brain functional connectivity in AD and FTD.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"46\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10232-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10232-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Classification for Alzheimer's disease and frontotemporal dementia via resting-state electroencephalography-based coherence and convolutional neural network.
The study aimed to diagnose of Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) based on brain functional connectivity features extracted via resting-state Electroencephalographic (EEG) signals, and subsequently developed a convolutional neural network (CNN) model, Coherence-CNN, for classification. First, a publicly available dataset of EEG resting state-closed eye recordings containing 36 AD subjects, 23 FTD subjects, and 29 cognitively normal (CN) subjects was used. Then, coherence metrics were utilized to quantify brain functional connectivity, and the differences in coherence between groups across various frequency bands were investigated. Next, spectral clustering was used to analyze variations and differences in brain functional connectivity related to disease states, revealing distinct connectivity patterns in brain electrode position maps. The results demonstrated that brain functional connectivity between different regions was more robust in the CN group, while the AD and FTD groups exhibited various degrees of connectivity decline, reflecting the pronounced differences in connectivity patterns associated with each condition. Furthermore, Coherence-CNN was developed based on CNN and the feature of coherence for three-class classification, achieving a commendable accuracy of 94.32% through leave-one-out cross-validation. This study revealed that Coherence-CNN demonstrated significant performance for distinguishing AD, FTD, and CN groups, supporting the disorder of brain functional connectivity in AD and FTD.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.