基于放射组学和机器学习的胸腺肿块术前多分类。

IF 3.5 2区 医学 Q2 ONCOLOGY
Yan Zhu, Li Wang, Aichao Ruan, Zhiyu Peng, Zhenzhong Zhang
{"title":"基于放射组学和机器学习的胸腺肿块术前多分类。","authors":"Yan Zhu, Li Wang, Aichao Ruan, Zhiyu Peng, Zhenzhong Zhang","doi":"10.1186/s40644-025-00839-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Apart from rare cases such as lymphomas, germ cell tumors, neuroendocrine neoplasms, and thymic hyperplasia, thymic mass lesions (TMLs) are typically categorized into cysts, and thymomas. However, the classification results cannot be determined in advance and can only be confirmed through postoperative pathology. Therefore, the objective of this study is to rely on clinical parameters and radiomic features extracted from chest computed tomography (CT) scans to facilitate the preoperative classification of TMLs. The model development specifically focused on thymic cysts and thymomas, as these are the most commonly encountered anterior mediastinal tumors in clinical practice.</p><p><strong>Materials and methods: </strong>This retrospective study included 400 participants from 3 hospitals between September 2017 and September 2024 due to TMLs. The participants were classified into 7 groups based on the ultimately confirmed etiology: thymic cysts and thymomas, including types A, AB, B1, B2, B3, and C. All participants underwent contrast-enhanced chest CT scans, with senior radiologists delineating regions of interest to extract radiomic features. Additionally, the participants' ages were also collected as clinical parameters for analysis. The participants were randomly allocated into a training set and a validation set at a 7:3 ratio. A classifier models were developed using the data from the training set, and their performances were evaluated on the validation set.</p><p><strong>Results: </strong>The model exhibited good classification performance with accuracies of 0.8547.</p><p><strong>Conclusion: </strong>The model can assist in early diagnosis and the development of personalized treatment strategies for patients with TMLs.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"25"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preoperative multiclass classification of thymic mass lesions based on radiomics and machine learning.\",\"authors\":\"Yan Zhu, Li Wang, Aichao Ruan, Zhiyu Peng, Zhenzhong Zhang\",\"doi\":\"10.1186/s40644-025-00839-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Apart from rare cases such as lymphomas, germ cell tumors, neuroendocrine neoplasms, and thymic hyperplasia, thymic mass lesions (TMLs) are typically categorized into cysts, and thymomas. However, the classification results cannot be determined in advance and can only be confirmed through postoperative pathology. Therefore, the objective of this study is to rely on clinical parameters and radiomic features extracted from chest computed tomography (CT) scans to facilitate the preoperative classification of TMLs. The model development specifically focused on thymic cysts and thymomas, as these are the most commonly encountered anterior mediastinal tumors in clinical practice.</p><p><strong>Materials and methods: </strong>This retrospective study included 400 participants from 3 hospitals between September 2017 and September 2024 due to TMLs. The participants were classified into 7 groups based on the ultimately confirmed etiology: thymic cysts and thymomas, including types A, AB, B1, B2, B3, and C. All participants underwent contrast-enhanced chest CT scans, with senior radiologists delineating regions of interest to extract radiomic features. Additionally, the participants' ages were also collected as clinical parameters for analysis. The participants were randomly allocated into a training set and a validation set at a 7:3 ratio. A classifier models were developed using the data from the training set, and their performances were evaluated on the validation set.</p><p><strong>Results: </strong>The model exhibited good classification performance with accuracies of 0.8547.</p><p><strong>Conclusion: </strong>The model can assist in early diagnosis and the development of personalized treatment strategies for patients with TMLs.</p>\",\"PeriodicalId\":9548,\"journal\":{\"name\":\"Cancer Imaging\",\"volume\":\"25 1\",\"pages\":\"25\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40644-025-00839-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00839-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:除了淋巴瘤、生殖细胞肿瘤、神经内分泌肿瘤和胸腺增生等罕见病例外,胸腺肿块性病变通常分为囊肿和胸腺瘤。但分类结果无法提前确定,只能通过术后病理证实。因此,本研究的目的是依靠从胸部计算机断层扫描(CT)中提取的临床参数和放射学特征来促进tml的术前分类。模型的发展特别关注胸腺囊肿和胸腺瘤,因为它们是临床实践中最常见的前纵隔肿瘤。材料与方法:本回顾性研究纳入了2017年9月至2024年9月期间来自3家医院的400名tml患者。根据最终确定的病因将参与者分为7组:胸腺囊肿和胸腺瘤,包括A型、AB型、B1型、B2型、B3型和c型。所有参与者都进行了胸部CT增强扫描,由高级放射科医生划定感兴趣的区域以提取放射学特征。此外,还收集了参与者的年龄作为临床参数进行分析。参与者以7:3的比例随机分配到训练集和验证集。利用训练集的数据建立分类器模型,并在验证集上对其性能进行评价。结果:该模型具有良好的分类性能,准确率为0.8547。结论:该模型有助于颞下颌颞痛患者的早期诊断和个性化治疗策略的制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preoperative multiclass classification of thymic mass lesions based on radiomics and machine learning.

Background: Apart from rare cases such as lymphomas, germ cell tumors, neuroendocrine neoplasms, and thymic hyperplasia, thymic mass lesions (TMLs) are typically categorized into cysts, and thymomas. However, the classification results cannot be determined in advance and can only be confirmed through postoperative pathology. Therefore, the objective of this study is to rely on clinical parameters and radiomic features extracted from chest computed tomography (CT) scans to facilitate the preoperative classification of TMLs. The model development specifically focused on thymic cysts and thymomas, as these are the most commonly encountered anterior mediastinal tumors in clinical practice.

Materials and methods: This retrospective study included 400 participants from 3 hospitals between September 2017 and September 2024 due to TMLs. The participants were classified into 7 groups based on the ultimately confirmed etiology: thymic cysts and thymomas, including types A, AB, B1, B2, B3, and C. All participants underwent contrast-enhanced chest CT scans, with senior radiologists delineating regions of interest to extract radiomic features. Additionally, the participants' ages were also collected as clinical parameters for analysis. The participants were randomly allocated into a training set and a validation set at a 7:3 ratio. A classifier models were developed using the data from the training set, and their performances were evaluated on the validation set.

Results: The model exhibited good classification performance with accuracies of 0.8547.

Conclusion: The model can assist in early diagnosis and the development of personalized treatment strategies for patients with TMLs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Imaging
Cancer Imaging ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology. The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include: Breast Imaging Chest Complications of treatment Ear, Nose & Throat Gastrointestinal Hepatobiliary & Pancreatic Imaging biomarkers Interventional Lymphoma Measurement of tumour response Molecular functional imaging Musculoskeletal Neuro oncology Nuclear Medicine Paediatric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信