氯法齐明通过抑制Wnt6信号和调节肿瘤免疫微环境,增强胶质母细胞瘤的抗pd -1免疫治疗。

IF 5.1 2区 医学 Q2 IMMUNOLOGY
Yuze Zhao, Yuguang Song, Weiping Li, Jiangping Wu, Zhengbao Zhao, Tingli Qu, Hong Xiao, Manyuan Wang, Min Zhu, Peiming Zheng, Huili Wan, Qingkun Song, Huixia Zheng, Shuo Wang
{"title":"氯法齐明通过抑制Wnt6信号和调节肿瘤免疫微环境,增强胶质母细胞瘤的抗pd -1免疫治疗。","authors":"Yuze Zhao, Yuguang Song, Weiping Li, Jiangping Wu, Zhengbao Zhao, Tingli Qu, Hong Xiao, Manyuan Wang, Min Zhu, Peiming Zheng, Huili Wan, Qingkun Song, Huixia Zheng, Shuo Wang","doi":"10.1007/s00262-025-03994-5","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is an aggressive and lethal primary brain tumor with limitedtreatment options due to its resistance to conventional therapies and an immunosuppressive tumor microenvironment. In this study, we investigated whether clofazimine, an inhibitor of the Wnt/β-catenin signaling pathway, could enhance the efficacy of anti-PD-1 immunotherapy in GBM. Our in vitro and in vivo experiments demonstrated that clofazimine suppressed GBM cell proliferation, induced apoptosis, and inhibited invasion by downregulating Wnt6-mediated activation of the Wnt/β-catenin pathway and the downstream MEK/ERK signaling cascade, leading to decreased PD-L1 expression. Notably, the combination of clofazimine and anti-PD-1 therapy significantly reduced tumor growth and intracranial invasion in orthotopic GBM mouse models, resulting in extended survival. This combination therapy also reshaped the tumor immune microenvironment by increasing cytotoxic CD8<sup>+</sup> T cell infiltration, reducing regulatory T cells, and promoting T cell receptor clonality and diversity, indicative of a robust anti-tumor immune response. Our findings suggest that clofazimine enhances the therapeutic effects of anti-PD-1 immunotherapy in GBM through modulation of the Wnt6/β-catenin/PD-L1 axis and reshaping the immune microenvironment. While these results are promising, further clinical studies are needed to evaluate the efficacy and safety of this combinatory approach in GBM patients.</p>","PeriodicalId":9595,"journal":{"name":"Cancer Immunology, Immunotherapy","volume":"74 4","pages":"137"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889303/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clofazimine enhances anti-PD-1 immunotherapy in glioblastoma by inhibiting Wnt6 signaling and modulating the tumor immune microenvironment.\",\"authors\":\"Yuze Zhao, Yuguang Song, Weiping Li, Jiangping Wu, Zhengbao Zhao, Tingli Qu, Hong Xiao, Manyuan Wang, Min Zhu, Peiming Zheng, Huili Wan, Qingkun Song, Huixia Zheng, Shuo Wang\",\"doi\":\"10.1007/s00262-025-03994-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM) is an aggressive and lethal primary brain tumor with limitedtreatment options due to its resistance to conventional therapies and an immunosuppressive tumor microenvironment. In this study, we investigated whether clofazimine, an inhibitor of the Wnt/β-catenin signaling pathway, could enhance the efficacy of anti-PD-1 immunotherapy in GBM. Our in vitro and in vivo experiments demonstrated that clofazimine suppressed GBM cell proliferation, induced apoptosis, and inhibited invasion by downregulating Wnt6-mediated activation of the Wnt/β-catenin pathway and the downstream MEK/ERK signaling cascade, leading to decreased PD-L1 expression. Notably, the combination of clofazimine and anti-PD-1 therapy significantly reduced tumor growth and intracranial invasion in orthotopic GBM mouse models, resulting in extended survival. This combination therapy also reshaped the tumor immune microenvironment by increasing cytotoxic CD8<sup>+</sup> T cell infiltration, reducing regulatory T cells, and promoting T cell receptor clonality and diversity, indicative of a robust anti-tumor immune response. Our findings suggest that clofazimine enhances the therapeutic effects of anti-PD-1 immunotherapy in GBM through modulation of the Wnt6/β-catenin/PD-L1 axis and reshaping the immune microenvironment. While these results are promising, further clinical studies are needed to evaluate the efficacy and safety of this combinatory approach in GBM patients.</p>\",\"PeriodicalId\":9595,\"journal\":{\"name\":\"Cancer Immunology, Immunotherapy\",\"volume\":\"74 4\",\"pages\":\"137\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889303/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Immunology, Immunotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00262-025-03994-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Immunology, Immunotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00262-025-03994-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多形式胶质母细胞瘤(GBM)是一种侵袭性和致死性的原发性脑肿瘤,由于其对常规治疗的耐药性和免疫抑制肿瘤微环境,治疗选择有限。在本研究中,我们研究了clofazimine作为Wnt/β-catenin信号通路的抑制剂是否可以增强抗pd -1免疫治疗GBM的疗效。我们的体外和体内实验表明,氯法齐明通过下调wnt6介导的Wnt/β-catenin通路和下游MEK/ERK信号级联的激活,抑制GBM细胞增殖,诱导细胞凋亡,抑制侵袭,导致PD-L1表达降低。值得注意的是,氯法齐明联合抗pd -1治疗可显著降低原位GBM小鼠模型的肿瘤生长和颅内侵袭,延长生存期。这种联合治疗还通过增加细胞毒性CD8+ T细胞浸润、减少调节性T细胞、促进T细胞受体克隆和多样性来重塑肿瘤免疫微环境,表明了强大的抗肿瘤免疫反应。我们的研究结果表明,氯法齐明通过调节Wnt6/β-catenin/PD-L1轴和重塑免疫微环境来增强抗pd -1免疫治疗在GBM中的治疗效果。虽然这些结果很有希望,但需要进一步的临床研究来评估这种联合方法在GBM患者中的有效性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clofazimine enhances anti-PD-1 immunotherapy in glioblastoma by inhibiting Wnt6 signaling and modulating the tumor immune microenvironment.

Glioblastoma multiforme (GBM) is an aggressive and lethal primary brain tumor with limitedtreatment options due to its resistance to conventional therapies and an immunosuppressive tumor microenvironment. In this study, we investigated whether clofazimine, an inhibitor of the Wnt/β-catenin signaling pathway, could enhance the efficacy of anti-PD-1 immunotherapy in GBM. Our in vitro and in vivo experiments demonstrated that clofazimine suppressed GBM cell proliferation, induced apoptosis, and inhibited invasion by downregulating Wnt6-mediated activation of the Wnt/β-catenin pathway and the downstream MEK/ERK signaling cascade, leading to decreased PD-L1 expression. Notably, the combination of clofazimine and anti-PD-1 therapy significantly reduced tumor growth and intracranial invasion in orthotopic GBM mouse models, resulting in extended survival. This combination therapy also reshaped the tumor immune microenvironment by increasing cytotoxic CD8+ T cell infiltration, reducing regulatory T cells, and promoting T cell receptor clonality and diversity, indicative of a robust anti-tumor immune response. Our findings suggest that clofazimine enhances the therapeutic effects of anti-PD-1 immunotherapy in GBM through modulation of the Wnt6/β-catenin/PD-L1 axis and reshaping the immune microenvironment. While these results are promising, further clinical studies are needed to evaluate the efficacy and safety of this combinatory approach in GBM patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
1.70%
发文量
207
审稿时长
1 months
期刊介绍: Cancer Immunology, Immunotherapy has the basic aim of keeping readers informed of the latest research results in the fields of oncology and immunology. As knowledge expands, the scope of the journal has broadened to include more of the progress being made in the areas of biology concerned with biological response modifiers. This helps keep readers up to date on the latest advances in our understanding of tumor-host interactions. The journal publishes short editorials including "position papers," general reviews, original articles, and short communications, providing a forum for the most current experimental and clinical advances in tumor immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信