Lichao Zhang , Shuwen Xiong , Lei Xu , Junwei Liang , Xuehua Zhao , Honglai Zhang , Xu Tan
{"title":"利用蛋白质语言模型进行稳健的抗菌肽检测。","authors":"Lichao Zhang , Shuwen Xiong , Lei Xu , Junwei Liang , Xuehua Zhao , Honglai Zhang , Xu Tan","doi":"10.1016/j.ymeth.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial peptides (AMPs) are promising candidates for addressing the global challenge of antibiotic resistance due to their broad-spectrum antimicrobial properties. Traditional AMP identification methods, while effective, are labor-intensive and time-consuming. Recent advancements in deep learning and large language models (LLMs), especially protein language models (PLMs) present a transformative approach for AMP prediction. In this study, we propose PLAPD, a novel framework leveraging a pre-trained ESM2 protein language model for AMP classification. Besides, PLAPD combines local feature extraction via convolutional layers and global feature extraction with a residual Transformer module. We benchmarked PLAPD against state-of-the-art AMP prediction models using a dataset comprising 8,268 peptide sequences, achieving superior performance in Accuracy (0.87), Precision (0.9359), Specificity (0.9456), MCC (0.7486), and AUC (0.9225). The results highlight the potential of PLAPD as a high-throughput and accurate tool for AMP discovery.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"238 ","pages":"Pages 19-26"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging protein language models for robust antimicrobial peptide detection\",\"authors\":\"Lichao Zhang , Shuwen Xiong , Lei Xu , Junwei Liang , Xuehua Zhao , Honglai Zhang , Xu Tan\",\"doi\":\"10.1016/j.ymeth.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimicrobial peptides (AMPs) are promising candidates for addressing the global challenge of antibiotic resistance due to their broad-spectrum antimicrobial properties. Traditional AMP identification methods, while effective, are labor-intensive and time-consuming. Recent advancements in deep learning and large language models (LLMs), especially protein language models (PLMs) present a transformative approach for AMP prediction. In this study, we propose PLAPD, a novel framework leveraging a pre-trained ESM2 protein language model for AMP classification. Besides, PLAPD combines local feature extraction via convolutional layers and global feature extraction with a residual Transformer module. We benchmarked PLAPD against state-of-the-art AMP prediction models using a dataset comprising 8,268 peptide sequences, achieving superior performance in Accuracy (0.87), Precision (0.9359), Specificity (0.9456), MCC (0.7486), and AUC (0.9225). The results highlight the potential of PLAPD as a high-throughput and accurate tool for AMP discovery.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"238 \",\"pages\":\"Pages 19-26\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202325000544\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000544","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Leveraging protein language models for robust antimicrobial peptide detection
Antimicrobial peptides (AMPs) are promising candidates for addressing the global challenge of antibiotic resistance due to their broad-spectrum antimicrobial properties. Traditional AMP identification methods, while effective, are labor-intensive and time-consuming. Recent advancements in deep learning and large language models (LLMs), especially protein language models (PLMs) present a transformative approach for AMP prediction. In this study, we propose PLAPD, a novel framework leveraging a pre-trained ESM2 protein language model for AMP classification. Besides, PLAPD combines local feature extraction via convolutional layers and global feature extraction with a residual Transformer module. We benchmarked PLAPD against state-of-the-art AMP prediction models using a dataset comprising 8,268 peptide sequences, achieving superior performance in Accuracy (0.87), Precision (0.9359), Specificity (0.9456), MCC (0.7486), and AUC (0.9225). The results highlight the potential of PLAPD as a high-throughput and accurate tool for AMP discovery.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.