原位缺氧软骨再生支架的生物制备。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
R Di Gesù, A Palumbo Piccionello, G Vitale, S Buscemi, S Panzavolta, M F Di Filippo, A Leonarda, M Cuccia, A Di Prima, R Gottardi
{"title":"原位缺氧软骨再生支架的生物制备。","authors":"R Di Gesù, A Palumbo Piccionello, G Vitale, S Buscemi, S Panzavolta, M F Di Filippo, A Leonarda, M Cuccia, A Di Prima, R Gottardi","doi":"10.1088/1758-5090/adbd79","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a debilitating joint condition affecting millions of people worldwide, triggering painful chondral defects (CDs) that ultimately compromise the overarching patients' quality of life. Currently, several reconstructive cartilage techniques (RCTs) (i.e.: matrix-assisted autologous chondrocytes implantation has been developed to overcome the total joint replacement limitations in the treatment of CDs. However, there is no consensus on the effectiveness of RCTs in the long term, as they do not provide adequate pro-regenerative stimuli to ensure complete CDs healing. In this study, we describe the biofabrication of an innovative scaffold capable to promote the CDs healing by delivering pro-regenerative hypoxic cues at the cellular/tissue level, to be used during RCTs. The scaffold is composed of a gelatin methacrylate (GelMA) matrix doped with hypoxic seeds of GelMA functionalized with a fluorinated oxadiazole (GelOXA), which ensures the delivery of hypoxic cues to human articular chondrocytes (hACs) embedded within the scaffold. We found that the GelMA/GelOXA scaffold preserved hACs viability, maintained their native phenotype, and significantly improved the production of type II collagen. Besides, we observed a reduction in type I and type X collagen, characteristic of unhealthy cartilage. These findings pave the way for the regeneration of healthy, hyaline-like cartilage, by delivering hypoxic cues even under normoxic conditions. Furthermore, the GelMA/GelOXA scaffold's ability to deliver healing signals directly to the injury site holds great potential for treating OA and related CDs, and has the potential to revolutionize the field of cartilage repair and regenerative medicine.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofabrication of an<i>in situ</i>hypoxia-delivery scaffold for cartilage regeneration.\",\"authors\":\"R Di Gesù, A Palumbo Piccionello, G Vitale, S Buscemi, S Panzavolta, M F Di Filippo, A Leonarda, M Cuccia, A Di Prima, R Gottardi\",\"doi\":\"10.1088/1758-5090/adbd79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) is a debilitating joint condition affecting millions of people worldwide, triggering painful chondral defects (CDs) that ultimately compromise the overarching patients' quality of life. Currently, several reconstructive cartilage techniques (RCTs) (i.e.: matrix-assisted autologous chondrocytes implantation has been developed to overcome the total joint replacement limitations in the treatment of CDs. However, there is no consensus on the effectiveness of RCTs in the long term, as they do not provide adequate pro-regenerative stimuli to ensure complete CDs healing. In this study, we describe the biofabrication of an innovative scaffold capable to promote the CDs healing by delivering pro-regenerative hypoxic cues at the cellular/tissue level, to be used during RCTs. The scaffold is composed of a gelatin methacrylate (GelMA) matrix doped with hypoxic seeds of GelMA functionalized with a fluorinated oxadiazole (GelOXA), which ensures the delivery of hypoxic cues to human articular chondrocytes (hACs) embedded within the scaffold. We found that the GelMA/GelOXA scaffold preserved hACs viability, maintained their native phenotype, and significantly improved the production of type II collagen. Besides, we observed a reduction in type I and type X collagen, characteristic of unhealthy cartilage. These findings pave the way for the regeneration of healthy, hyaline-like cartilage, by delivering hypoxic cues even under normoxic conditions. Furthermore, the GelMA/GelOXA scaffold's ability to deliver healing signals directly to the injury site holds great potential for treating OA and related CDs, and has the potential to revolutionize the field of cartilage repair and regenerative medicine.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/adbd79\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adbd79","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

骨关节炎(OA)是一种影响全球数百万人的衰弱性关节疾病,引发疼痛的软骨缺损(cd),最终损害患者的总体生活质量。目前,一些重建软骨技术(rct)(即基质辅助自体软骨细胞植入- MACI)已经被开发出来,以克服全关节置换术(TJR)治疗cd的局限性。然而,对于随机对照试验的长期有效性尚无共识,因为它们不能提供足够的促再生刺激来确保cd完全愈合。在这项研究中,我们描述了一种创新支架的生物制造,该支架能够通过在细胞/组织水平上传递促再生缺氧信号来促进CDs愈合,并将在随机对照试验中使用。该支架由甲基丙烯酸明胶(GelMA)基质组成,基质中掺杂了用氟化恶二唑(GelOXA)功能化的GelMA缺氧种子,以确保将缺氧信号传递给嵌入支架内的人类关节软骨细胞(hACs)。我们发现GelMA/GelOXA支架保留了hACs的活力,保持了它们的天然表型,并显著提高了II型胶原的产生。此外,我们观察到I型和X型胶原蛋白的减少,这是不健康软骨的特征。这些发现为健康透明样软骨的再生铺平了道路,即使在正常条件下也能传递缺氧信号。此外,GelMA/GelOXA支架将愈合信号直接传递到损伤部位的能力在治疗OA和相关cd方面具有很大的潜力,并有可能彻底改变软骨修复和再生医学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofabrication of anin situhypoxia-delivery scaffold for cartilage regeneration.

Osteoarthritis (OA) is a debilitating joint condition affecting millions of people worldwide, triggering painful chondral defects (CDs) that ultimately compromise the overarching patients' quality of life. Currently, several reconstructive cartilage techniques (RCTs) (i.e.: matrix-assisted autologous chondrocytes implantation has been developed to overcome the total joint replacement limitations in the treatment of CDs. However, there is no consensus on the effectiveness of RCTs in the long term, as they do not provide adequate pro-regenerative stimuli to ensure complete CDs healing. In this study, we describe the biofabrication of an innovative scaffold capable to promote the CDs healing by delivering pro-regenerative hypoxic cues at the cellular/tissue level, to be used during RCTs. The scaffold is composed of a gelatin methacrylate (GelMA) matrix doped with hypoxic seeds of GelMA functionalized with a fluorinated oxadiazole (GelOXA), which ensures the delivery of hypoxic cues to human articular chondrocytes (hACs) embedded within the scaffold. We found that the GelMA/GelOXA scaffold preserved hACs viability, maintained their native phenotype, and significantly improved the production of type II collagen. Besides, we observed a reduction in type I and type X collagen, characteristic of unhealthy cartilage. These findings pave the way for the regeneration of healthy, hyaline-like cartilage, by delivering hypoxic cues even under normoxic conditions. Furthermore, the GelMA/GelOXA scaffold's ability to deliver healing signals directly to the injury site holds great potential for treating OA and related CDs, and has the potential to revolutionize the field of cartilage repair and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信