低成本低碳可再生靛蓝的微生物途径。

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Sustainable Chemistry & Engineering Pub Date : 2025-02-14 eCollection Date: 2025-03-03 DOI:10.1021/acssuschemeng.4c09962
Nawa Raj Baral, Deepanwita Banerjee, Thomas Eng, Blake A Simmons, Aindrila Mukhopadhyay, Corinne D Scown
{"title":"低成本低碳可再生靛蓝的微生物途径。","authors":"Nawa Raj Baral, Deepanwita Banerjee, Thomas Eng, Blake A Simmons, Aindrila Mukhopadhyay, Corinne D Scown","doi":"10.1021/acssuschemeng.4c09962","DOIUrl":null,"url":null,"abstract":"<p><p>Indigoidine is a bioadvantaged platform molecule with diverse applications, including use as a textile dye, biotransistor, biosolar cell, biosensor, and food coloring. There are multiple microbial hosts and carbon sources that can be used and optimized for its production, yet there is limited guidance for which options have the greatest commercial potential. Here, we consider five different host microbes and combine genome-scale metabolic models with techno-economic and lifecycle assessment models. <i>Pseudomonas putida</i> currently outperforms synthetic indigo production and other indigoidine-producing hosts, using glucose, xylose, and lignin-derived aromatics to produce indigoidine at a minimum selling price of $2.9/kg and a greenhouse gas (GHG) footprint of 3.5 kgCO<sub>2e</sub>/kg. Optimizing pathways-achieving 90% of the theoretical indigoidine yield from sugars and aromatics-can reduce costs 6-7-fold and GHG emissions 3-10-fold. From a cost perspective, microbes that co-utilize aromatics are advantageous, while selecting hosts that coproduce other value-added molecules can reduce GHG emissions. System-wide improvements and the use of a low-cost, low-carbon nitrogen source are crucial for commercial viability in all cases.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 8","pages":"3300-3310"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881132/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbial Pathways for Cost-Effective Low-Carbon Renewable Indigoidine.\",\"authors\":\"Nawa Raj Baral, Deepanwita Banerjee, Thomas Eng, Blake A Simmons, Aindrila Mukhopadhyay, Corinne D Scown\",\"doi\":\"10.1021/acssuschemeng.4c09962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indigoidine is a bioadvantaged platform molecule with diverse applications, including use as a textile dye, biotransistor, biosolar cell, biosensor, and food coloring. There are multiple microbial hosts and carbon sources that can be used and optimized for its production, yet there is limited guidance for which options have the greatest commercial potential. Here, we consider five different host microbes and combine genome-scale metabolic models with techno-economic and lifecycle assessment models. <i>Pseudomonas putida</i> currently outperforms synthetic indigo production and other indigoidine-producing hosts, using glucose, xylose, and lignin-derived aromatics to produce indigoidine at a minimum selling price of $2.9/kg and a greenhouse gas (GHG) footprint of 3.5 kgCO<sub>2e</sub>/kg. Optimizing pathways-achieving 90% of the theoretical indigoidine yield from sugars and aromatics-can reduce costs 6-7-fold and GHG emissions 3-10-fold. From a cost perspective, microbes that co-utilize aromatics are advantageous, while selecting hosts that coproduce other value-added molecules can reduce GHG emissions. System-wide improvements and the use of a low-cost, low-carbon nitrogen source are crucial for commercial viability in all cases.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 8\",\"pages\":\"3300-3310\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881132/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c09962\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c09962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

靛蓝素是一种具有生物优势的平台分子,具有多种应用,包括用作纺织染料,生物晶体管,生物太阳能电池,生物传感器和食品色素。有多种微生物宿主和碳源可以用于其生产并进行优化,但对于哪种选择具有最大的商业潜力,指导有限。在这里,我们考虑了五种不同的宿主微生物,并将基因组尺度的代谢模型与技术经济和生命周期评估模型相结合。恶臭假单胞菌目前优于合成靛蓝生产和其他生产靛蓝的宿主,利用葡萄糖、木糖和木质素衍生的芳烃生产靛蓝,最低售价为2.9美元/公斤,温室气体(GHG)足迹为3.5公斤二氧化碳当量/公斤。优化途径——从糖和芳烃中获得90%的靛蓝素理论产量——可以将成本降低6-7倍,温室气体排放量降低3-10倍。从成本的角度来看,共同利用芳烃的微生物是有利的,而选择共同产生其他增值分子的宿主可以减少温室气体排放。在所有情况下,全系统的改进和低成本低碳氮源的使用对于商业可行性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial Pathways for Cost-Effective Low-Carbon Renewable Indigoidine.

Indigoidine is a bioadvantaged platform molecule with diverse applications, including use as a textile dye, biotransistor, biosolar cell, biosensor, and food coloring. There are multiple microbial hosts and carbon sources that can be used and optimized for its production, yet there is limited guidance for which options have the greatest commercial potential. Here, we consider five different host microbes and combine genome-scale metabolic models with techno-economic and lifecycle assessment models. Pseudomonas putida currently outperforms synthetic indigo production and other indigoidine-producing hosts, using glucose, xylose, and lignin-derived aromatics to produce indigoidine at a minimum selling price of $2.9/kg and a greenhouse gas (GHG) footprint of 3.5 kgCO2e/kg. Optimizing pathways-achieving 90% of the theoretical indigoidine yield from sugars and aromatics-can reduce costs 6-7-fold and GHG emissions 3-10-fold. From a cost perspective, microbes that co-utilize aromatics are advantageous, while selecting hosts that coproduce other value-added molecules can reduce GHG emissions. System-wide improvements and the use of a low-cost, low-carbon nitrogen source are crucial for commercial viability in all cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信