La3+-取代BaSnO3钙钛矿作为选择性CO2还原制甲酸盐的稳健电催化剂

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-03-19 Epub Date: 2025-03-06 DOI:10.1021/acsami.4c21829
Qian Zhang, Suihan Gao, Yuehui Yan, Mingtao Li, Wei Yan, Yu Huang, Jun-Ji Cao
{"title":"La3+-取代BaSnO3钙钛矿作为选择性CO2还原制甲酸盐的稳健电催化剂","authors":"Qian Zhang, Suihan Gao, Yuehui Yan, Mingtao Li, Wei Yan, Yu Huang, Jun-Ji Cao","doi":"10.1021/acsami.4c21829","DOIUrl":null,"url":null,"abstract":"<p><p>Rational design of high-performance catalysts for CO<sub>2</sub> electroreduction is crucial for achieving carbon neutrality, yet effective modification strategies remain scarce. In this study, we present the microwave heating approach to incorporate La<sup>3+</sup> ions into Sn-based perovskite oxides, significantly enhancing their electrocatalytic performance for the reduction of CO<sub>2</sub> to formate. Through comprehensive characterization techniques, including X-ray photoelectron spectroscopy, synchrotron radiation X-ray absorption spectroscopy, electrochemical measurements (Tafel analysis and impedance spectroscopy), and density functional theory calculations, we demonstrate that La<sup>3+</sup> substitution effectively modulates the Sn-O bond distance in BaSnO<sub>3</sub>. This structural modification induces local charge density enrichment, facilitates CO<sub>2</sub> adsorption, and enhances electron transfer kinetics, resulting in a substantial improvement in the formate Faradaic efficiency. In situ Raman spectroscopic analysis and postreaction XPS characterization confirmed the structural integrity of the perovskite framework and the preservation of Sn valence states under negative potentials. This work provides fundamental insights into the CO<sub>2</sub> reduction reaction mechanism on perovskite electrocatalysts and establishes a framework for the design of advanced tin-based electrocatalysts.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"16881-16891"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"La<sup>3+</sup>-Substituted BaSnO<sub>3</sub> Perovskite as a Robust Electrocatalyst for Selective CO<sub>2</sub> Reduction to Formate.\",\"authors\":\"Qian Zhang, Suihan Gao, Yuehui Yan, Mingtao Li, Wei Yan, Yu Huang, Jun-Ji Cao\",\"doi\":\"10.1021/acsami.4c21829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rational design of high-performance catalysts for CO<sub>2</sub> electroreduction is crucial for achieving carbon neutrality, yet effective modification strategies remain scarce. In this study, we present the microwave heating approach to incorporate La<sup>3+</sup> ions into Sn-based perovskite oxides, significantly enhancing their electrocatalytic performance for the reduction of CO<sub>2</sub> to formate. Through comprehensive characterization techniques, including X-ray photoelectron spectroscopy, synchrotron radiation X-ray absorption spectroscopy, electrochemical measurements (Tafel analysis and impedance spectroscopy), and density functional theory calculations, we demonstrate that La<sup>3+</sup> substitution effectively modulates the Sn-O bond distance in BaSnO<sub>3</sub>. This structural modification induces local charge density enrichment, facilitates CO<sub>2</sub> adsorption, and enhances electron transfer kinetics, resulting in a substantial improvement in the formate Faradaic efficiency. In situ Raman spectroscopic analysis and postreaction XPS characterization confirmed the structural integrity of the perovskite framework and the preservation of Sn valence states under negative potentials. This work provides fundamental insights into the CO<sub>2</sub> reduction reaction mechanism on perovskite electrocatalysts and establishes a framework for the design of advanced tin-based electrocatalysts.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"16881-16891\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c21829\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21829","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合理设计高性能的CO2电还原催化剂对于实现碳中和至关重要,但有效的改性策略仍然很少。在这项研究中,我们提出了微波加热的方法,将La3+离子掺入到sn基钙钛矿氧化物中,显著提高了它们的电催化性能,将CO2还原为甲酸盐。通过x射线光电子能谱、同步辐射x射线吸收能谱、电化学测量(Tafel分析和阻抗谱)和密度泛函理论计算等综合表征技术,我们证明了La3+取代有效地调节了BaSnO3中Sn-O键的距离。这种结构修饰诱导了局部电荷密度的富集,促进了CO2的吸附,并增强了电子传递动力学,从而大大提高了甲酸酯的法拉第效率。原位拉曼光谱分析和后处理XPS表征证实了钙钛矿框架的结构完整性和负电位下Sn价态的保存。本研究为钙钛矿电催化剂上CO2还原反应机理的研究提供了基础,并为设计先进的锡基电催化剂奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
La3+-Substituted BaSnO3 Perovskite as a Robust Electrocatalyst for Selective CO2 Reduction to Formate.

Rational design of high-performance catalysts for CO2 electroreduction is crucial for achieving carbon neutrality, yet effective modification strategies remain scarce. In this study, we present the microwave heating approach to incorporate La3+ ions into Sn-based perovskite oxides, significantly enhancing their electrocatalytic performance for the reduction of CO2 to formate. Through comprehensive characterization techniques, including X-ray photoelectron spectroscopy, synchrotron radiation X-ray absorption spectroscopy, electrochemical measurements (Tafel analysis and impedance spectroscopy), and density functional theory calculations, we demonstrate that La3+ substitution effectively modulates the Sn-O bond distance in BaSnO3. This structural modification induces local charge density enrichment, facilitates CO2 adsorption, and enhances electron transfer kinetics, resulting in a substantial improvement in the formate Faradaic efficiency. In situ Raman spectroscopic analysis and postreaction XPS characterization confirmed the structural integrity of the perovskite framework and the preservation of Sn valence states under negative potentials. This work provides fundamental insights into the CO2 reduction reaction mechanism on perovskite electrocatalysts and establishes a framework for the design of advanced tin-based electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信