球状红球菌自给细胞色素P450 CYP116B234的特性及其在2-羟基苯乙酸代谢中的天然作用

IF 5.7 2区 生物学
Simran Kundral, Hannah Beamish, Peter D. Giang, Lauren J. Salisbury, Amanda S. Nouwens, Sunil K. Khare, Paul V. Bernhardt, Jeffrey R. Harmer, Stephen G. Bell, James J. De Voss
{"title":"球状红球菌自给细胞色素P450 CYP116B234的特性及其在2-羟基苯乙酸代谢中的天然作用","authors":"Simran Kundral,&nbsp;Hannah Beamish,&nbsp;Peter D. Giang,&nbsp;Lauren J. Salisbury,&nbsp;Amanda S. Nouwens,&nbsp;Sunil K. Khare,&nbsp;Paul V. Bernhardt,&nbsp;Jeffrey R. Harmer,&nbsp;Stephen G. Bell,&nbsp;James J. De Voss","doi":"10.1111/1751-7915.70125","DOIUrl":null,"url":null,"abstract":"<p>Cytochromes P450 (P450s) are exceptional biocatalysts that enable the selective oxidation of unactivated C–H bonds using molecular oxygen. Typically, auxiliary redox partner proteins deliver electrons from NAD(P)H to the P450, enabling oxygen activation. However, associating native redox partners with P450s can be challenging, particularly when they are genomically separated. Self-sufficient P450s, where the P450 heme domain is naturally fused to redox partners, represent a simpler, single-protein system. Here, we present CYP116B234, a novel self-sufficient P450 from <i>Rhodococcus globerulus</i>, comprising fused heme and phthalate-family oxygenase reductase (PFOR) domains. The gene encoding CYP116B234 was codon-optimised for heterologous expression in <i>E. coli</i> and subsequently purified to homogeneity. Spectroelectrochemical analysis and electron paramagnetic resonance spectroscopy were performed to determine the redox potentials of the heme and associated Fe–S and FMN cofactors of the PFOR domain. CYP116B234 binds and efficiently oxidises the substituted aromatic compound 2-hydroxyphenylacetic acid (2-HPA) to homogentisic acid. Quantitative proteomics revealed the expression of CYP116B234 in <i>R. globerulus</i> grown on 2-HPA, suggesting a role in initiating 2-HPA degradation. This study presents a new addition to the self-sufficient CYP116 family and provides evidence for their native function.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70125","citationCount":"0","resultStr":"{\"title\":\"Characterisation of the Self-Sufficient Cytochrome P450 CYP116B234 From Rhodococcus globerulus and Its Suggested Native Role in 2-Hydroxyphenylacetic Acid Metabolism\",\"authors\":\"Simran Kundral,&nbsp;Hannah Beamish,&nbsp;Peter D. Giang,&nbsp;Lauren J. Salisbury,&nbsp;Amanda S. Nouwens,&nbsp;Sunil K. Khare,&nbsp;Paul V. Bernhardt,&nbsp;Jeffrey R. Harmer,&nbsp;Stephen G. Bell,&nbsp;James J. De Voss\",\"doi\":\"10.1111/1751-7915.70125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cytochromes P450 (P450s) are exceptional biocatalysts that enable the selective oxidation of unactivated C–H bonds using molecular oxygen. Typically, auxiliary redox partner proteins deliver electrons from NAD(P)H to the P450, enabling oxygen activation. However, associating native redox partners with P450s can be challenging, particularly when they are genomically separated. Self-sufficient P450s, where the P450 heme domain is naturally fused to redox partners, represent a simpler, single-protein system. Here, we present CYP116B234, a novel self-sufficient P450 from <i>Rhodococcus globerulus</i>, comprising fused heme and phthalate-family oxygenase reductase (PFOR) domains. The gene encoding CYP116B234 was codon-optimised for heterologous expression in <i>E. coli</i> and subsequently purified to homogeneity. Spectroelectrochemical analysis and electron paramagnetic resonance spectroscopy were performed to determine the redox potentials of the heme and associated Fe–S and FMN cofactors of the PFOR domain. CYP116B234 binds and efficiently oxidises the substituted aromatic compound 2-hydroxyphenylacetic acid (2-HPA) to homogentisic acid. Quantitative proteomics revealed the expression of CYP116B234 in <i>R. globerulus</i> grown on 2-HPA, suggesting a role in initiating 2-HPA degradation. This study presents a new addition to the self-sufficient CYP116 family and provides evidence for their native function.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70125\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70125\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞色素P450 (P450)是一种特殊的生物催化剂,可以使用分子氧选择性氧化非活化的C-H键。通常,辅助氧化还原伙伴蛋白将电子从NAD(P)H传递到P450,从而使氧活化。然而,将天然氧化还原伴侣与p450联系起来是具有挑战性的,特别是当它们在基因组上分离时。自给自足的P450,其中P450血红素结构域自然地融合到氧化还原伙伴,代表了一个更简单的单蛋白系统。在这里,我们提出了CYP116B234,一个新的自给自足的P450来自红球菌,包括融合血红素和邻苯二甲酸盐家族加氧酶还原酶(PFOR)结构域。编码CYP116B234的基因经密码子优化后,可在大肠杆菌中异种表达,随后纯化至均匀性。采用光谱电化学分析和电子顺磁共振谱法测定了PFOR结构域血红素及其相关Fe-S和FMN辅因子的氧化还原电位。CYP116B234结合并有效氧化取代的芳香化合物2-羟基苯基乙酸(2-HPA)为均质酸。定量蛋白质组学分析显示,CYP116B234在2-HPA培养基上生长的球芽甘蓝中表达,提示其在启动2-HPA降解过程中起作用。本研究提出了自给自足的CYP116家族的新成员,并为其天然功能提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterisation of the Self-Sufficient Cytochrome P450 CYP116B234 From Rhodococcus globerulus and Its Suggested Native Role in 2-Hydroxyphenylacetic Acid Metabolism

Characterisation of the Self-Sufficient Cytochrome P450 CYP116B234 From Rhodococcus globerulus and Its Suggested Native Role in 2-Hydroxyphenylacetic Acid Metabolism

Cytochromes P450 (P450s) are exceptional biocatalysts that enable the selective oxidation of unactivated C–H bonds using molecular oxygen. Typically, auxiliary redox partner proteins deliver electrons from NAD(P)H to the P450, enabling oxygen activation. However, associating native redox partners with P450s can be challenging, particularly when they are genomically separated. Self-sufficient P450s, where the P450 heme domain is naturally fused to redox partners, represent a simpler, single-protein system. Here, we present CYP116B234, a novel self-sufficient P450 from Rhodococcus globerulus, comprising fused heme and phthalate-family oxygenase reductase (PFOR) domains. The gene encoding CYP116B234 was codon-optimised for heterologous expression in E. coli and subsequently purified to homogeneity. Spectroelectrochemical analysis and electron paramagnetic resonance spectroscopy were performed to determine the redox potentials of the heme and associated Fe–S and FMN cofactors of the PFOR domain. CYP116B234 binds and efficiently oxidises the substituted aromatic compound 2-hydroxyphenylacetic acid (2-HPA) to homogentisic acid. Quantitative proteomics revealed the expression of CYP116B234 in R. globerulus grown on 2-HPA, suggesting a role in initiating 2-HPA degradation. This study presents a new addition to the self-sufficient CYP116 family and provides evidence for their native function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信