高阶李普希茨三明治定理

IF 1 2区 数学 Q1 MATHEMATICS
Terry Lyons, Andrew D. McLeod
{"title":"高阶李普希茨三明治定理","authors":"Terry Lyons,&nbsp;Andrew D. McLeod","doi":"10.1112/jlms.70121","DOIUrl":null,"url":null,"abstract":"<p>We investigate the consequence of two <span></span><math>\n <semantics>\n <mrow>\n <mi>Lip</mi>\n <mo>(</mo>\n <mi>γ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathrm{Lip}}(\\gamma)$</annotation>\n </semantics></math> functions, in the sense of Stein, being close throughout a subset of their domain. A particular consequence of our results is the following. Given <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n <mo>&gt;</mo>\n <mi>ε</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$K_0 &gt; \\varepsilon &gt; 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&gt;</mo>\n <mi>η</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\gamma &gt; \\eta &gt; 0$</annotation>\n </semantics></math>, there is a constant <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>=</mo>\n <mi>δ</mi>\n <mo>(</mo>\n <mi>γ</mi>\n <mo>,</mo>\n <mi>η</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>,</mo>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\delta = \\delta (\\gamma,\\eta,\\varepsilon,K_0) &gt; 0$</annotation>\n </semantics></math> for which the following is true. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\Sigma \\subset {\\mathbb {R}}^d$</annotation>\n </semantics></math> be closed and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>h</mi>\n <mo>:</mo>\n <mi>Σ</mi>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f, h: \\Sigma \\rightarrow {\\mathbb {R}}$</annotation>\n </semantics></math> be <span></span><math>\n <semantics>\n <mrow>\n <mi>Lip</mi>\n <mo>(</mo>\n <mi>γ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathrm{Lip}}(\\gamma)$</annotation>\n </semantics></math> functions whose <span></span><math>\n <semantics>\n <mrow>\n <mi>Lip</mi>\n <mo>(</mo>\n <mi>γ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathrm{Lip}}(\\gamma)$</annotation>\n </semantics></math> norms are both bounded above by <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n <annotation>$K_0$</annotation>\n </semantics></math>. Suppose <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <mi>Σ</mi>\n </mrow>\n <annotation>$B \\subset \\Sigma$</annotation>\n </semantics></math> is closed and that <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> coincide throughout <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>. Then, over the set of points in <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> whose distance to <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> is at most <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>, we have that the <span></span><math>\n <semantics>\n <mrow>\n <mi>Lip</mi>\n <mo>(</mo>\n <mi>η</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathrm{Lip}}(\\eta)$</annotation>\n </semantics></math> norm of the difference <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>−</mo>\n <mi>h</mi>\n </mrow>\n <annotation>$f-h$</annotation>\n </semantics></math> is bounded above by <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>. More generally, we establish that this phenomenon remains valid in a less restrictive Banach space setting under the weaker hypothesis that the two <span></span><math>\n <semantics>\n <mrow>\n <mi>Lip</mi>\n <mo>(</mo>\n <mi>γ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathrm{Lip}}(\\gamma)$</annotation>\n </semantics></math> functions <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> are only close in a pointwise sense throughout the closed subset <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>. We require only that the subset <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> be closed; in particular, the case that <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> is finite is covered by our results. The restriction that <span></span><math>\n <semantics>\n <mrow>\n <mi>η</mi>\n <mo>&lt;</mo>\n <mi>γ</mi>\n </mrow>\n <annotation>$\\eta &lt; \\gamma$</annotation>\n </semantics></math> is sharp in the sense that our result is false for <span></span><math>\n <semantics>\n <mrow>\n <mi>η</mi>\n <mo>:</mo>\n <mo>=</mo>\n <mi>γ</mi>\n </mrow>\n <annotation>$\\eta:= \\gamma$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70121","citationCount":"0","resultStr":"{\"title\":\"Higher order Lipschitz Sandwich theorems\",\"authors\":\"Terry Lyons,&nbsp;Andrew D. McLeod\",\"doi\":\"10.1112/jlms.70121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the consequence of two <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Lip</mi>\\n <mo>(</mo>\\n <mi>γ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathrm{Lip}}(\\\\gamma)$</annotation>\\n </semantics></math> functions, in the sense of Stein, being close throughout a subset of their domain. A particular consequence of our results is the following. Given <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>&gt;</mo>\\n <mi>ε</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$K_0 &gt; \\\\varepsilon &gt; 0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>&gt;</mo>\\n <mi>η</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\gamma &gt; \\\\eta &gt; 0$</annotation>\\n </semantics></math>, there is a constant <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mo>=</mo>\\n <mi>δ</mi>\\n <mo>(</mo>\\n <mi>γ</mi>\\n <mo>,</mo>\\n <mi>η</mi>\\n <mo>,</mo>\\n <mi>ε</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>K</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\delta = \\\\delta (\\\\gamma,\\\\eta,\\\\varepsilon,K_0) &gt; 0$</annotation>\\n </semantics></math> for which the following is true. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Sigma \\\\subset {\\\\mathbb {R}}^d$</annotation>\\n </semantics></math> be closed and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>,</mo>\\n <mi>h</mi>\\n <mo>:</mo>\\n <mi>Σ</mi>\\n <mo>→</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$f, h: \\\\Sigma \\\\rightarrow {\\\\mathbb {R}}$</annotation>\\n </semantics></math> be <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Lip</mi>\\n <mo>(</mo>\\n <mi>γ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathrm{Lip}}(\\\\gamma)$</annotation>\\n </semantics></math> functions whose <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Lip</mi>\\n <mo>(</mo>\\n <mi>γ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathrm{Lip}}(\\\\gamma)$</annotation>\\n </semantics></math> norms are both bounded above by <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$K_0$</annotation>\\n </semantics></math>. Suppose <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mo>⊂</mo>\\n <mi>Σ</mi>\\n </mrow>\\n <annotation>$B \\\\subset \\\\Sigma$</annotation>\\n </semantics></math> is closed and that <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> coincide throughout <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math>. Then, over the set of points in <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> whose distance to <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> is at most <span></span><math>\\n <semantics>\\n <mi>δ</mi>\\n <annotation>$\\\\delta$</annotation>\\n </semantics></math>, we have that the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Lip</mi>\\n <mo>(</mo>\\n <mi>η</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathrm{Lip}}(\\\\eta)$</annotation>\\n </semantics></math> norm of the difference <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>−</mo>\\n <mi>h</mi>\\n </mrow>\\n <annotation>$f-h$</annotation>\\n </semantics></math> is bounded above by <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon$</annotation>\\n </semantics></math>. More generally, we establish that this phenomenon remains valid in a less restrictive Banach space setting under the weaker hypothesis that the two <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Lip</mi>\\n <mo>(</mo>\\n <mi>γ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathrm{Lip}}(\\\\gamma)$</annotation>\\n </semantics></math> functions <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> are only close in a pointwise sense throughout the closed subset <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math>. We require only that the subset <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> be closed; in particular, the case that <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> is finite is covered by our results. The restriction that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>η</mi>\\n <mo>&lt;</mo>\\n <mi>γ</mi>\\n </mrow>\\n <annotation>$\\\\eta &lt; \\\\gamma$</annotation>\\n </semantics></math> is sharp in the sense that our result is false for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>η</mi>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mi>γ</mi>\\n </mrow>\\n <annotation>$\\\\eta:= \\\\gamma$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70121\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70121","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

η &lt;γ $\eta &lt;\gamma$是尖锐的,因为我们的结果对于η:= γ $\eta:= \gamma$是假的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order Lipschitz Sandwich theorems

We investigate the consequence of two Lip ( γ ) ${\mathrm{Lip}}(\gamma)$ functions, in the sense of Stein, being close throughout a subset of their domain. A particular consequence of our results is the following. Given K 0 > ε > 0 $K_0 > \varepsilon > 0$ and γ > η > 0 $\gamma > \eta > 0$ , there is a constant δ = δ ( γ , η , ε , K 0 ) > 0 $\delta = \delta (\gamma,\eta,\varepsilon,K_0) > 0$ for which the following is true. Let Σ R d $\Sigma \subset {\mathbb {R}}^d$ be closed and f , h : Σ R $f, h: \Sigma \rightarrow {\mathbb {R}}$ be Lip ( γ ) ${\mathrm{Lip}}(\gamma)$ functions whose Lip ( γ ) ${\mathrm{Lip}}(\gamma)$ norms are both bounded above by K 0 $K_0$ . Suppose B Σ $B \subset \Sigma$ is closed and that f $f$ and h $h$ coincide throughout B $B$ . Then, over the set of points in Σ $\Sigma$ whose distance to B $B$ is at most δ $\delta$ , we have that the Lip ( η ) ${\mathrm{Lip}}(\eta)$ norm of the difference f h $f-h$ is bounded above by ε $\varepsilon$ . More generally, we establish that this phenomenon remains valid in a less restrictive Banach space setting under the weaker hypothesis that the two Lip ( γ ) ${\mathrm{Lip}}(\gamma)$ functions f $f$ and h $h$ are only close in a pointwise sense throughout the closed subset B $B$ . We require only that the subset Σ $\Sigma$ be closed; in particular, the case that Σ $\Sigma$ is finite is covered by our results. The restriction that η < γ $\eta < \gamma$ is sharp in the sense that our result is false for η : = γ $\eta:= \gamma$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信