受管道系统激励的不规则外壳声场预测与管理

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Xiangliang Wang  (, ), Dongwei Wang  (, ), Yun Ma  (, ), Gengkai Hu  (, )
{"title":"受管道系统激励的不规则外壳声场预测与管理","authors":"Xiangliang Wang \n (,&nbsp;),&nbsp;Dongwei Wang \n (,&nbsp;),&nbsp;Yun Ma \n (,&nbsp;),&nbsp;Gengkai Hu \n (,&nbsp;)","doi":"10.1007/s10409-024-24559-x","DOIUrl":null,"url":null,"abstract":"<div><p>The sound field driven by piping systems in enclosures may severely affect living comfort, which is frequently encountered in various engineering applications. Managing this sound field relies heavily on the available prediction tools at hand, e.g., the widely used finite element methods are computationally expensive due to the necessity to discretize entire space, analytical models, based on modal expansion method, may offer substantial advantages in terms of computational cost and efficiency. However, deriving eigenmodes of irregular enclosed spaces may be challenging, which impedes accurate and rapid predictions of the sound field in practical applications. This study presents an analytical framework aimed at rapidly and accurately predicting the interior sound field driven by the piping system vibrations in irregular enclosures. Vibration response of the piping system is obtained using the wave approach, and a line dipole source is idealized as the sound source of the piping system vibration. On the basis of eigenmodes of regular enclosures, the Kirchhoff-Helmholtz integral theorem (modal expansion method for irregular enclosures) is introduced to account for the boundaries of irregular enclosures. This theoretical framework is validated through numerical simulations by finite element method and experiments, demonstrating high accuracy and significant efficiency advantages. The proposed method can be further employed to optimize radiated sound fields by tailoring the impedance of space walls or layout of piping systems. This study provides an efficient tool for predicting radiated sound field in general enclosures driven by vibration of piping systems, paving a new path for indoor acoustical optimization.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sound field prediction and management in irregular enclosures subjected to piping system excitation\",\"authors\":\"Xiangliang Wang \\n (,&nbsp;),&nbsp;Dongwei Wang \\n (,&nbsp;),&nbsp;Yun Ma \\n (,&nbsp;),&nbsp;Gengkai Hu \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24559-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sound field driven by piping systems in enclosures may severely affect living comfort, which is frequently encountered in various engineering applications. Managing this sound field relies heavily on the available prediction tools at hand, e.g., the widely used finite element methods are computationally expensive due to the necessity to discretize entire space, analytical models, based on modal expansion method, may offer substantial advantages in terms of computational cost and efficiency. However, deriving eigenmodes of irregular enclosed spaces may be challenging, which impedes accurate and rapid predictions of the sound field in practical applications. This study presents an analytical framework aimed at rapidly and accurately predicting the interior sound field driven by the piping system vibrations in irregular enclosures. Vibration response of the piping system is obtained using the wave approach, and a line dipole source is idealized as the sound source of the piping system vibration. On the basis of eigenmodes of regular enclosures, the Kirchhoff-Helmholtz integral theorem (modal expansion method for irregular enclosures) is introduced to account for the boundaries of irregular enclosures. This theoretical framework is validated through numerical simulations by finite element method and experiments, demonstrating high accuracy and significant efficiency advantages. The proposed method can be further employed to optimize radiated sound fields by tailoring the impedance of space walls or layout of piping systems. This study provides an efficient tool for predicting radiated sound field in general enclosures driven by vibration of piping systems, paving a new path for indoor acoustical optimization.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 11\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24559-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24559-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在各种工程应用中,管道系统驱动的声场会严重影响人们的生活舒适性。管理这一声场在很大程度上依赖于现有的预测工具,例如,广泛使用的有限元方法由于需要将整个空间离散化,计算成本很高,而基于模态展开方法的分析模型在计算成本和效率方面可能具有很大的优势。然而,导出不规则封闭空间的特征模态可能具有挑战性,这阻碍了在实际应用中准确和快速地预测声场。本文提出了一种分析框架,旨在快速准确地预测不规则壳体中管道系统振动驱动的内部声场。采用波动法得到了管道系统的振动响应,并将线偶极子源作为管道系统振动的理想声源。在正则包体本征模态的基础上,引入Kirchhoff-Helmholtz积分定理(不规则包体的模态展开法)来解释不规则包体的边界。该理论框架通过有限元数值模拟和实验验证,具有较高的精度和显著的效率优势。该方法可进一步用于通过调整空间壁阻抗或管道系统布局来优化辐射声场。该研究为管道系统振动驱动下的普通箱体辐射声场预测提供了有效工具,为室内声学优化开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sound field prediction and management in irregular enclosures subjected to piping system excitation

The sound field driven by piping systems in enclosures may severely affect living comfort, which is frequently encountered in various engineering applications. Managing this sound field relies heavily on the available prediction tools at hand, e.g., the widely used finite element methods are computationally expensive due to the necessity to discretize entire space, analytical models, based on modal expansion method, may offer substantial advantages in terms of computational cost and efficiency. However, deriving eigenmodes of irregular enclosed spaces may be challenging, which impedes accurate and rapid predictions of the sound field in practical applications. This study presents an analytical framework aimed at rapidly and accurately predicting the interior sound field driven by the piping system vibrations in irregular enclosures. Vibration response of the piping system is obtained using the wave approach, and a line dipole source is idealized as the sound source of the piping system vibration. On the basis of eigenmodes of regular enclosures, the Kirchhoff-Helmholtz integral theorem (modal expansion method for irregular enclosures) is introduced to account for the boundaries of irregular enclosures. This theoretical framework is validated through numerical simulations by finite element method and experiments, demonstrating high accuracy and significant efficiency advantages. The proposed method can be further employed to optimize radiated sound fields by tailoring the impedance of space walls or layout of piping systems. This study provides an efficient tool for predicting radiated sound field in general enclosures driven by vibration of piping systems, paving a new path for indoor acoustical optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信