计算声学问题中粘滞和热效应的时域计算

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
A. I. Korolkov, A. Yu. Laptev, A. V. Shanin
{"title":"计算声学问题中粘滞和热效应的时域计算","authors":"A. I. Korolkov,&nbsp;A. Yu. Laptev,&nbsp;A. V. Shanin","doi":"10.1134/S106377102460311X","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-domain formulation is formulated based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, and the results of numerical modeling are compared with the analytical solution</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"1051 - 1057"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accounting for Viscous and Thermal Effects in Time Domain in Computational Acoustic Problems\",\"authors\":\"A. I. Korolkov,&nbsp;A. Yu. Laptev,&nbsp;A. V. Shanin\",\"doi\":\"10.1134/S106377102460311X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-domain formulation is formulated based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, and the results of numerical modeling are compared with the analytical solution</p></div>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"70 6\",\"pages\":\"1051 - 1057\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106377102460311X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106377102460311X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了热粘性边界条件下的声波传播问题。对于热粘性边界条件,基于分数阶导数的概念,给出了时域公式。给出了该问题的弱形式,用有限元法将其简化为volterra型积分-微分方程组。构造了该系统数值解的隐式有限差分格式。为了验证这一点,对细管内的声传播问题进行了数值模拟,并将数值模拟结果与解析解进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accounting for Viscous and Thermal Effects in Time Domain in Computational Acoustic Problems

Accounting for Viscous and Thermal Effects in Time Domain in Computational Acoustic Problems

The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-domain formulation is formulated based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, and the results of numerical modeling are compared with the analytical solution

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信