宇宙弦时空中收获真空纠缠的增强

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Willy Izquierdo, J. Beltran, Enrique Arias
{"title":"宇宙弦时空中收获真空纠缠的增强","authors":"Willy Izquierdo,&nbsp;J. Beltran,&nbsp;Enrique Arias","doi":"10.1007/JHEP03(2025)049","DOIUrl":null,"url":null,"abstract":"<p>We analyze the entanglement generation in a pair of qubits that experience the vacuum fluctuations of a scalar field in the Cosmic String spacetime. The qubits are modeled as Unruh-DeWitt detectors coupled to a massless scalar field. We introduce a Heisenberg <i>XY</i> -interaction between the qubits that enhances the generation of quantum correlations. It is supposed that the qubits begin at a general mixed state described by a density operator with no entanglement while the field stays at its vacuum state. In this way, we find the general properties and conditions to create entanglement between the qubits by exploiting the field vacuum fluctuations. We quantify the qubits entanglement using the Negativity measure based on the Peres-Horodecki positive partial transpose criterion. We find that the Cosmic String would increase the entanglement harvesting when both qubits are near the Cosmic String. When the qubits locations are far from the Cosmic String we recover the usual results for Minkowski space. The Heisenberg <i>XY</i> -interaction enhances the entanglement harvesting irrespective of the coupling nature (ferromagnetic or anti-ferromagnetic). When the qubits are far apart from each other we find a maximum entanglement harvesting at the resonance points between the Heisenberg coupling constant and the qubits energy gap.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)049.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancement of harvesting vacuum entanglement in Cosmic String Spacetime\",\"authors\":\"Willy Izquierdo,&nbsp;J. Beltran,&nbsp;Enrique Arias\",\"doi\":\"10.1007/JHEP03(2025)049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze the entanglement generation in a pair of qubits that experience the vacuum fluctuations of a scalar field in the Cosmic String spacetime. The qubits are modeled as Unruh-DeWitt detectors coupled to a massless scalar field. We introduce a Heisenberg <i>XY</i> -interaction between the qubits that enhances the generation of quantum correlations. It is supposed that the qubits begin at a general mixed state described by a density operator with no entanglement while the field stays at its vacuum state. In this way, we find the general properties and conditions to create entanglement between the qubits by exploiting the field vacuum fluctuations. We quantify the qubits entanglement using the Negativity measure based on the Peres-Horodecki positive partial transpose criterion. We find that the Cosmic String would increase the entanglement harvesting when both qubits are near the Cosmic String. When the qubits locations are far from the Cosmic String we recover the usual results for Minkowski space. The Heisenberg <i>XY</i> -interaction enhances the entanglement harvesting irrespective of the coupling nature (ferromagnetic or anti-ferromagnetic). When the qubits are far apart from each other we find a maximum entanglement harvesting at the resonance points between the Heisenberg coupling constant and the qubits energy gap.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 3\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)049.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP03(2025)049\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)049","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了在宇宙弦时空中经历标量场真空波动的一对量子比特中纠缠的产生。量子比特被建模为与无质量标量场耦合的 Unruh-DeWitt 探测器。我们引入了量子比特之间的海森堡 XY 相互作用,这种作用增强了量子相关性的产生。假设量子比特开始于由密度算子描述的无纠缠的一般混合状态,而场则保持其真空状态。这样,我们就找到了利用场真空波动在量子比特之间产生纠缠的一般特性和条件。我们使用基于佩雷斯-霍罗德茨基正部分转置准则的负量度来量化量子纠缠。我们发现,当两个量子比特都靠近宇宙弦时,宇宙弦会增加纠缠收获。当量子比特的位置远离宇宙弦时,我们恢复了闵科夫斯基空间的通常结果。无论耦合性质如何(铁磁或反铁磁),海森堡 XY 相互作用都会增强纠缠捕获。当量子比特彼此相距甚远时,我们会发现在海森堡耦合常数与量子比特能隙之间的共振点处,纠缠捕获量最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of harvesting vacuum entanglement in Cosmic String Spacetime

We analyze the entanglement generation in a pair of qubits that experience the vacuum fluctuations of a scalar field in the Cosmic String spacetime. The qubits are modeled as Unruh-DeWitt detectors coupled to a massless scalar field. We introduce a Heisenberg XY -interaction between the qubits that enhances the generation of quantum correlations. It is supposed that the qubits begin at a general mixed state described by a density operator with no entanglement while the field stays at its vacuum state. In this way, we find the general properties and conditions to create entanglement between the qubits by exploiting the field vacuum fluctuations. We quantify the qubits entanglement using the Negativity measure based on the Peres-Horodecki positive partial transpose criterion. We find that the Cosmic String would increase the entanglement harvesting when both qubits are near the Cosmic String. When the qubits locations are far from the Cosmic String we recover the usual results for Minkowski space. The Heisenberg XY -interaction enhances the entanglement harvesting irrespective of the coupling nature (ferromagnetic or anti-ferromagnetic). When the qubits are far apart from each other we find a maximum entanglement harvesting at the resonance points between the Heisenberg coupling constant and the qubits energy gap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信