放热速率分布对爆震波传播稳定性的影响

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Kepeng Yao  (, ), Chun Wang  (, ), Guilai Han  (, ), Zonglin Jiang  (, )
{"title":"放热速率分布对爆震波传播稳定性的影响","authors":"Kepeng Yao \n (,&nbsp;),&nbsp;Chun Wang \n (,&nbsp;),&nbsp;Guilai Han \n (,&nbsp;),&nbsp;Zonglin Jiang \n (,&nbsp;)","doi":"10.1007/s10409-024-24519-x","DOIUrl":null,"url":null,"abstract":"<div><p>The distribution of exothermic reaction rates is jointly influenced by reduced activation energy and reaction rate constant. This study focuses on the effect of distribution of exothermic reaction rates on detonation wave propagation instability, specifically under conditions where the length of the induction and exothermic reaction remains constant. It is found that the distribution variation of exothermic reaction rates significantly influences the detonation wave propagation characteristics. Specifically, under conditions of high activation energy, the exothermic reaction rate profile exhibits a smoother distribution but becomes more prone to perturbations. This heightened sensitivity, coupled with the augmented overdriven degree associated with pulsating detonation and cellular detonation wave propagation, further exacerbates the instability characteristics of detonation waves. Especially to the two-dimensional detonation waves with high activation energies, the distribution of exothermic reaction rates becomes more sensitive to these displacements, reinforcing the transverse shock wave and leading to a transformation of the wavefront and cellular structure towards more unstable configurations. This research delves into the intricate interactions between the distribution of exothermic reaction rates and detonation wave instability, aiming to provide an explanatory of detonation instability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of heat-release rate distribution on the propagation stability of detonation waves\",\"authors\":\"Kepeng Yao \\n (,&nbsp;),&nbsp;Chun Wang \\n (,&nbsp;),&nbsp;Guilai Han \\n (,&nbsp;),&nbsp;Zonglin Jiang \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24519-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The distribution of exothermic reaction rates is jointly influenced by reduced activation energy and reaction rate constant. This study focuses on the effect of distribution of exothermic reaction rates on detonation wave propagation instability, specifically under conditions where the length of the induction and exothermic reaction remains constant. It is found that the distribution variation of exothermic reaction rates significantly influences the detonation wave propagation characteristics. Specifically, under conditions of high activation energy, the exothermic reaction rate profile exhibits a smoother distribution but becomes more prone to perturbations. This heightened sensitivity, coupled with the augmented overdriven degree associated with pulsating detonation and cellular detonation wave propagation, further exacerbates the instability characteristics of detonation waves. Especially to the two-dimensional detonation waves with high activation energies, the distribution of exothermic reaction rates becomes more sensitive to these displacements, reinforcing the transverse shock wave and leading to a transformation of the wavefront and cellular structure towards more unstable configurations. This research delves into the intricate interactions between the distribution of exothermic reaction rates and detonation wave instability, aiming to provide an explanatory of detonation instability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24519-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24519-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

放热反应速率分布受还原活化能和反应速率常数的共同影响。本研究重点研究了放热反应速率分布对爆震波传播不稳定性的影响,特别是在诱导和放热反应长度保持不变的情况下。研究发现,放热反应速率的分布变化对爆震波传播特性有显著影响。具体而言,在高活化能条件下,放热反应速率曲线分布更平滑,但更容易受到扰动。这种高灵敏度,再加上与脉动爆轰和细胞爆轰波传播相关的过度驱动程度的增强,进一步加剧了爆轰波的不稳定性特征。特别是对于具有高活化能的二维爆震波,放热反应速率的分布对这些位移更加敏感,增强了横向激波,导致波前和胞体结构向更不稳定的构型转变。本研究探讨了放热反应速率分布与爆轰波不稳定性之间复杂的相互作用,旨在对爆轰波不稳定性提供解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of heat-release rate distribution on the propagation stability of detonation waves

The distribution of exothermic reaction rates is jointly influenced by reduced activation energy and reaction rate constant. This study focuses on the effect of distribution of exothermic reaction rates on detonation wave propagation instability, specifically under conditions where the length of the induction and exothermic reaction remains constant. It is found that the distribution variation of exothermic reaction rates significantly influences the detonation wave propagation characteristics. Specifically, under conditions of high activation energy, the exothermic reaction rate profile exhibits a smoother distribution but becomes more prone to perturbations. This heightened sensitivity, coupled with the augmented overdriven degree associated with pulsating detonation and cellular detonation wave propagation, further exacerbates the instability characteristics of detonation waves. Especially to the two-dimensional detonation waves with high activation energies, the distribution of exothermic reaction rates becomes more sensitive to these displacements, reinforcing the transverse shock wave and leading to a transformation of the wavefront and cellular structure towards more unstable configurations. This research delves into the intricate interactions between the distribution of exothermic reaction rates and detonation wave instability, aiming to provide an explanatory of detonation instability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信