金属和循环c -金属B-和n -掺杂h- bn吸附CO, NH3, HCN, CNCl和Cl2气体的第一性原理研究

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiaming Zhao, Mingcong Zhang, Chunyang Wang, Weiyao Yu, Yongliang Zhu, Pengcheng Zhu
{"title":"金属和循环c -金属B-和n -掺杂h- bn吸附CO, NH3, HCN, CNCl和Cl2气体的第一性原理研究","authors":"Jiaming Zhao,&nbsp;Mingcong Zhang,&nbsp;Chunyang Wang,&nbsp;Weiyao Yu,&nbsp;Yongliang Zhu,&nbsp;Pengcheng Zhu","doi":"10.1007/s13391-024-00540-w","DOIUrl":null,"url":null,"abstract":"<div><p>Effective detection of toxic gases such as carbon monoxide (CO), ammonia (NH<sub>3</sub>), hydrogen cyanide (HCN), cyanogen chloride (CNCl), and chlorine (Cl<sub>2</sub>) is highly important. Herein, the potential applications of metal and cyclic carbon (C)–metal doping at the boron (B) and nitrogen (N) sites of hexagonal boron nitride (h-BN) as CO, NH<sub>3</sub>, HCN, CNCl, and Cl<sub>2</sub> gas detection materials, and the performance characteristics of those systems, were investigated based on first principles. The calculated parameters for systems containing each gas along with different metal and cyclic C–metal B- and N-site-doped h-BN substrates include adsorption energy, energy band structure, charge transfer, density of states, differential charge density, and recovery time. Among the systems studied, h-BN@B-zinc (Zn)/CO, h-BN@B-Zn/HCN, h-BN@B-Zn/CNCl, h-BN@B-Zn/Cl<sub>2</sub>, and h-BN@B-3C-tin(Sn)/Cl<sub>2</sub> were characterized by strong adsorption, high electrosensitivity, and strong orbital hybridization, and were unaffected by N<sub>2</sub> and O<sub>2</sub> in the air environment. In addition, the desorption performance of these systems could be improved by varying degrees by modulating the adsorption energy using an applied electric field, which further facilitated thermoelectrolytic adsorption. These results imply that metal and cyclic C–metal B- and N-site-doped h-BN can be used to realize gas-sensing devices with good gas-sensing and adsorption properties.</p><h3>Graphical Abstract</h3><p>The doping of N-site of h-BN can significantly increase the conductivity. h-BN@B-Zn can effectively detect CO, HCN, CNCl and Cl<sub>2</sub>, h-BN@B-3C-Sn can effectively detect Cl<sub>2</sub>.h-BN@B-Zn and h-BN@B-3C-Sn. The substrate is not affected by air during detection. CO, HCN and CNCl can be desorbed effectively at h-BN@B-Zn at temperatures up to 334 K. Electric field can improve the desorption effect and further achieve thermoelectric desorption.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 2","pages":"268 - 288"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Study of CO, NH3, HCN, CNCl, and Cl2 Gas Adsorption Behaviors of Metal and Cyclic C–Metal B- and N-Site-Doped h-BNs\",\"authors\":\"Jiaming Zhao,&nbsp;Mingcong Zhang,&nbsp;Chunyang Wang,&nbsp;Weiyao Yu,&nbsp;Yongliang Zhu,&nbsp;Pengcheng Zhu\",\"doi\":\"10.1007/s13391-024-00540-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Effective detection of toxic gases such as carbon monoxide (CO), ammonia (NH<sub>3</sub>), hydrogen cyanide (HCN), cyanogen chloride (CNCl), and chlorine (Cl<sub>2</sub>) is highly important. Herein, the potential applications of metal and cyclic carbon (C)–metal doping at the boron (B) and nitrogen (N) sites of hexagonal boron nitride (h-BN) as CO, NH<sub>3</sub>, HCN, CNCl, and Cl<sub>2</sub> gas detection materials, and the performance characteristics of those systems, were investigated based on first principles. The calculated parameters for systems containing each gas along with different metal and cyclic C–metal B- and N-site-doped h-BN substrates include adsorption energy, energy band structure, charge transfer, density of states, differential charge density, and recovery time. Among the systems studied, h-BN@B-zinc (Zn)/CO, h-BN@B-Zn/HCN, h-BN@B-Zn/CNCl, h-BN@B-Zn/Cl<sub>2</sub>, and h-BN@B-3C-tin(Sn)/Cl<sub>2</sub> were characterized by strong adsorption, high electrosensitivity, and strong orbital hybridization, and were unaffected by N<sub>2</sub> and O<sub>2</sub> in the air environment. In addition, the desorption performance of these systems could be improved by varying degrees by modulating the adsorption energy using an applied electric field, which further facilitated thermoelectrolytic adsorption. These results imply that metal and cyclic C–metal B- and N-site-doped h-BN can be used to realize gas-sensing devices with good gas-sensing and adsorption properties.</p><h3>Graphical Abstract</h3><p>The doping of N-site of h-BN can significantly increase the conductivity. h-BN@B-Zn can effectively detect CO, HCN, CNCl and Cl<sub>2</sub>, h-BN@B-3C-Sn can effectively detect Cl<sub>2</sub>.h-BN@B-Zn and h-BN@B-3C-Sn. The substrate is not affected by air during detection. CO, HCN and CNCl can be desorbed effectively at h-BN@B-Zn at temperatures up to 334 K. Electric field can improve the desorption effect and further achieve thermoelectric desorption.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"21 2\",\"pages\":\"268 - 288\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-024-00540-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00540-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有效检测一氧化碳(CO)、氨(NH3)、氰化氢(HCN)、氯化氰(CNCl)、氯(Cl2)等有毒气体非常重要。本文基于第一性原理,研究了六方氮化硼(h-BN)的硼(B)和氮(N)位点上金属和环碳(C) -金属掺杂作为CO、NH3、HCN、CNCl和Cl2气体检测材料的潜在应用,以及这些体系的性能特征。计算了含有每种气体以及不同金属和循环c -金属B和n位掺杂h-BN衬底的体系的参数,包括吸附能、能带结构、电荷转移、态密度、差分电荷密度和恢复时间。所研究的体系中,h-BN@B-zinc (Zn)/CO、h-BN@B-Zn/HCN、h-BN@B-Zn/CNCl、h-BN@B-Zn/Cl2和h-BN@B-3C-tin(Sn)/Cl2具有强吸附、高电敏和强轨道杂化的特点,且不受空气环境中N2和O2的影响。此外,外加电场调节吸附能可以不同程度地提高系统的解吸性能,进一步促进热电解吸附。这些结果表明,金属和环c -金属B和n位掺杂的h-BN可以实现具有良好气敏和吸附性能的气敏器件。摘要掺杂氢氮化硼的n位可以显著提高电导率。h-BN@B-Zn能有效检测CO、HCN、CNCl、Cl2, h-BN@B-3C-Sn能有效检测Cl2.h-BN@B-Zn、h-BN@B-3C-Sn。基材在检测过程中不受空气的影响。CO、HCN和CNCl在h-BN@B-Zn温度下可有效解吸,温度可达334 K。电场可以提高解吸效果,进一步实现热电解吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Principles Study of CO, NH3, HCN, CNCl, and Cl2 Gas Adsorption Behaviors of Metal and Cyclic C–Metal B- and N-Site-Doped h-BNs

Effective detection of toxic gases such as carbon monoxide (CO), ammonia (NH3), hydrogen cyanide (HCN), cyanogen chloride (CNCl), and chlorine (Cl2) is highly important. Herein, the potential applications of metal and cyclic carbon (C)–metal doping at the boron (B) and nitrogen (N) sites of hexagonal boron nitride (h-BN) as CO, NH3, HCN, CNCl, and Cl2 gas detection materials, and the performance characteristics of those systems, were investigated based on first principles. The calculated parameters for systems containing each gas along with different metal and cyclic C–metal B- and N-site-doped h-BN substrates include adsorption energy, energy band structure, charge transfer, density of states, differential charge density, and recovery time. Among the systems studied, h-BN@B-zinc (Zn)/CO, h-BN@B-Zn/HCN, h-BN@B-Zn/CNCl, h-BN@B-Zn/Cl2, and h-BN@B-3C-tin(Sn)/Cl2 were characterized by strong adsorption, high electrosensitivity, and strong orbital hybridization, and were unaffected by N2 and O2 in the air environment. In addition, the desorption performance of these systems could be improved by varying degrees by modulating the adsorption energy using an applied electric field, which further facilitated thermoelectrolytic adsorption. These results imply that metal and cyclic C–metal B- and N-site-doped h-BN can be used to realize gas-sensing devices with good gas-sensing and adsorption properties.

Graphical Abstract

The doping of N-site of h-BN can significantly increase the conductivity. h-BN@B-Zn can effectively detect CO, HCN, CNCl and Cl2, h-BN@B-3C-Sn can effectively detect Cl2.h-BN@B-Zn and h-BN@B-3C-Sn. The substrate is not affected by air during detection. CO, HCN and CNCl can be desorbed effectively at h-BN@B-Zn at temperatures up to 334 K. Electric field can improve the desorption effect and further achieve thermoelectric desorption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信