具有非标准组件的各向异性方程的增强多网格求解器:三色雅可比,网格三倍化和傅立叶分析

Q1 Mathematics
Muhammad Shahid Ashraf, H. bin Zubair Syed
{"title":"具有非标准组件的各向异性方程的增强多网格求解器:三色雅可比,网格三倍化和傅立叶分析","authors":"Muhammad Shahid Ashraf,&nbsp;H. bin Zubair Syed","doi":"10.1016/j.padiff.2025.101133","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce an enhanced multigrid solver that offers an efficient solution method which is quite robust across a variety of boundary value problems. The solver’s theoretical foundation includes a framework for deriving optimal relaxation parameters, and features an auto-tuned, customizable meshing approach. It employs a hierarchical structure capable of handling various grid configurations, optimized through Local Fourier Analysis (LFA). Although primarily developed for the anisotropic diffusion equation, we extend the investigation to include the singularly perturbed convection diffusion equation; where we fine-tune meshing parameters, refine discretization techniques, and implement customized multigrid operators to address its unique challenges. Numerical experiments are included that demonstrate the solver’s robustness and efficiency, thereby making a strong case for its use across a wide range of second order elliptic problems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"13 ","pages":"Article 101133"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced multigrid solver for anisotropic equations with non-standard components: 3-Color Jacobi, mesh-tripling, and Fourier Analysis\",\"authors\":\"Muhammad Shahid Ashraf,&nbsp;H. bin Zubair Syed\",\"doi\":\"10.1016/j.padiff.2025.101133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce an enhanced multigrid solver that offers an efficient solution method which is quite robust across a variety of boundary value problems. The solver’s theoretical foundation includes a framework for deriving optimal relaxation parameters, and features an auto-tuned, customizable meshing approach. It employs a hierarchical structure capable of handling various grid configurations, optimized through Local Fourier Analysis (LFA). Although primarily developed for the anisotropic diffusion equation, we extend the investigation to include the singularly perturbed convection diffusion equation; where we fine-tune meshing parameters, refine discretization techniques, and implement customized multigrid operators to address its unique challenges. Numerical experiments are included that demonstrate the solver’s robustness and efficiency, thereby making a strong case for its use across a wide range of second order elliptic problems.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"13 \",\"pages\":\"Article 101133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125000609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种增强的多网格求解器,它提供了一种有效的求解方法,该方法在各种边值问题中具有相当的鲁棒性。该求解器的理论基础包括一个框架,用于推导最优松弛参数,并具有自动调谐,可定制的网格划分方法。它采用能够处理各种网格配置的分层结构,并通过局部傅里叶分析(LFA)进行优化。虽然主要针对各向异性扩散方程发展,但我们将研究扩展到包括奇摄动对流扩散方程;在这里,我们微调网格参数,改进离散化技术,并实施定制的多网格操作来解决其独特的挑战。数值实验证明了该求解器的鲁棒性和有效性,从而为其在广泛的二阶椭圆问题中的应用提供了强有力的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced multigrid solver for anisotropic equations with non-standard components: 3-Color Jacobi, mesh-tripling, and Fourier Analysis
In this paper, we introduce an enhanced multigrid solver that offers an efficient solution method which is quite robust across a variety of boundary value problems. The solver’s theoretical foundation includes a framework for deriving optimal relaxation parameters, and features an auto-tuned, customizable meshing approach. It employs a hierarchical structure capable of handling various grid configurations, optimized through Local Fourier Analysis (LFA). Although primarily developed for the anisotropic diffusion equation, we extend the investigation to include the singularly perturbed convection diffusion equation; where we fine-tune meshing parameters, refine discretization techniques, and implement customized multigrid operators to address its unique challenges. Numerical experiments are included that demonstrate the solver’s robustness and efficiency, thereby making a strong case for its use across a wide range of second order elliptic problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信