重启还是不重启,这是个问题

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
György P. Gehér, Marcin Jastrzebski, Earl T. Campbell, Ophelia Crawford
{"title":"重启还是不重启,这是个问题","authors":"György P. Gehér, Marcin Jastrzebski, Earl T. Campbell, Ophelia Crawford","doi":"10.1038/s41534-025-00998-y","DOIUrl":null,"url":null,"abstract":"<p>Whether to reset qubits, or not, during quantum error correction experiments is a question of both foundational and practical importance for quantum computing. Text-book quantum error correction demands that qubits are reset after measurement. However, fast qubit reset has proven challenging to execute at high fidelity. Consequently, many cutting-edge quantum error correction experiments are opting for the no-reset approach, where physical reset is not performed. It has recently been postulated that no-reset is functionally equivalent to reset procedures, as well as being faster and easier. For memory experiments, we confirm numerically that resetting provides no benefit. On the other hand, we identify a remarkable difference during logical operations. We find that unconditionally resetting qubits can reduce the duration of fault-tolerant logical operation by up to a factor of two as the number of measurement errors that can be tolerated is doubled. We support this with numerical simulations. However, our simulations also reveal that the no-reset performance is superior if the reset duration and infidelity exceed given thresholds. For example, with the noise model we considered, we find the no-reset performance to be superior when the reset duration is greater than approximately 100 ns and the physical error probability is greater than approximately 10<sup>−2.5</sup> ≈ 0.003. Lastly, we introduce two novel syndrome extraction circuits that can reduce the time overhead of no-reset approaches. Our findings provide guidance on how experimentalists should design future experiments.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"67 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To reset, or not to reset—that is the question\",\"authors\":\"György P. Gehér, Marcin Jastrzebski, Earl T. Campbell, Ophelia Crawford\",\"doi\":\"10.1038/s41534-025-00998-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Whether to reset qubits, or not, during quantum error correction experiments is a question of both foundational and practical importance for quantum computing. Text-book quantum error correction demands that qubits are reset after measurement. However, fast qubit reset has proven challenging to execute at high fidelity. Consequently, many cutting-edge quantum error correction experiments are opting for the no-reset approach, where physical reset is not performed. It has recently been postulated that no-reset is functionally equivalent to reset procedures, as well as being faster and easier. For memory experiments, we confirm numerically that resetting provides no benefit. On the other hand, we identify a remarkable difference during logical operations. We find that unconditionally resetting qubits can reduce the duration of fault-tolerant logical operation by up to a factor of two as the number of measurement errors that can be tolerated is doubled. We support this with numerical simulations. However, our simulations also reveal that the no-reset performance is superior if the reset duration and infidelity exceed given thresholds. For example, with the noise model we considered, we find the no-reset performance to be superior when the reset duration is greater than approximately 100 ns and the physical error probability is greater than approximately 10<sup>−2.5</sup> ≈ 0.003. Lastly, we introduce two novel syndrome extraction circuits that can reduce the time overhead of no-reset approaches. Our findings provide guidance on how experimentalists should design future experiments.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-00998-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00998-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在量子纠错实验中,是否重置量子比特是量子计算的基础和实际重要性问题。教科书上的量子纠错要求量子位在测量后被重置。然而,快速量子位重置已被证明在高保真度下执行具有挑战性。因此,许多尖端的量子纠错实验都选择了不复位的方法,即不进行物理复位。最近有人认为,不重置在功能上等同于重置过程,而且更快、更容易。在记忆实验中,我们用数值证实了重置不会带来任何好处。另一方面,我们在逻辑操作中发现了一个显著的区别。我们发现,无条件重置量子位可以将容错逻辑运算的持续时间减少两倍,因为可以容忍的测量误差数量增加了一倍。我们用数值模拟来支持这一点。然而,我们的模拟也表明,如果重置持续时间和不忠超过给定的阈值,则无重置性能优越。例如,对于我们考虑的噪声模型,我们发现当复位持续时间大于约100 ns,物理误差概率大于约10−2.5≈0.003时,无复位性能优越。最后,我们介绍了两种新的综合征提取电路,可以减少无复位方法的时间开销。我们的发现为实验者如何设计未来的实验提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

To reset, or not to reset—that is the question

To reset, or not to reset—that is the question

Whether to reset qubits, or not, during quantum error correction experiments is a question of both foundational and practical importance for quantum computing. Text-book quantum error correction demands that qubits are reset after measurement. However, fast qubit reset has proven challenging to execute at high fidelity. Consequently, many cutting-edge quantum error correction experiments are opting for the no-reset approach, where physical reset is not performed. It has recently been postulated that no-reset is functionally equivalent to reset procedures, as well as being faster and easier. For memory experiments, we confirm numerically that resetting provides no benefit. On the other hand, we identify a remarkable difference during logical operations. We find that unconditionally resetting qubits can reduce the duration of fault-tolerant logical operation by up to a factor of two as the number of measurement errors that can be tolerated is doubled. We support this with numerical simulations. However, our simulations also reveal that the no-reset performance is superior if the reset duration and infidelity exceed given thresholds. For example, with the noise model we considered, we find the no-reset performance to be superior when the reset duration is greater than approximately 100 ns and the physical error probability is greater than approximately 10−2.5 ≈ 0.003. Lastly, we introduce two novel syndrome extraction circuits that can reduce the time overhead of no-reset approaches. Our findings provide guidance on how experimentalists should design future experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信