拓扑导模共振:基本理论、实验与应用

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Sung Choi, Chan Young Park, Soo-Chan An, Jung Hyeon Pyo, Jae Woong Yoon
{"title":"拓扑导模共振:基本理论、实验与应用","authors":"Yu Sung Choi, Chan Young Park, Soo-Chan An, Jung Hyeon Pyo, Jae Woong Yoon","doi":"10.1515/nanoph-2024-0612","DOIUrl":null,"url":null,"abstract":"Guided-mode resonance (GMR) is a key principle for various nanophotonic elements in practice. In parallel, GMR structures offer an efficient experimental platform for fundamental study of novel wave phenomena because of its versatile capability to synthesize complicated potential distributions and analyze deep internal properties conveniently in the optical far-fields. In this paper, we provide a brief review of topological GMR effects as a promising subtopic of the emerging topological photonics. Starting from a conceptually minimal model, we explain basic topological parameters, associated optical properties, experimental realizations, and potential applications. We treat topics of recent interest including topological edge-state resonances, deterministic beam shaping and mode matching, bound states in the continuum, unidirectional resonances, and polarization vortices. We finally address limitations, remaining challenges, and perspective of the topic.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"13 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological guided-mode resonances: basic theory, experiments, and applications\",\"authors\":\"Yu Sung Choi, Chan Young Park, Soo-Chan An, Jung Hyeon Pyo, Jae Woong Yoon\",\"doi\":\"10.1515/nanoph-2024-0612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guided-mode resonance (GMR) is a key principle for various nanophotonic elements in practice. In parallel, GMR structures offer an efficient experimental platform for fundamental study of novel wave phenomena because of its versatile capability to synthesize complicated potential distributions and analyze deep internal properties conveniently in the optical far-fields. In this paper, we provide a brief review of topological GMR effects as a promising subtopic of the emerging topological photonics. Starting from a conceptually minimal model, we explain basic topological parameters, associated optical properties, experimental realizations, and potential applications. We treat topics of recent interest including topological edge-state resonances, deterministic beam shaping and mode matching, bound states in the continuum, unidirectional resonances, and polarization vortices. We finally address limitations, remaining challenges, and perspective of the topic.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0612\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0612","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

导模共振(GMR)是实际应用中各种纳米光子元件的关键原理。同时,由于GMR结构具有综合复杂势分布和分析光学远场深层内部性质的能力,为新型波现象的基础研究提供了一个有效的实验平台。本文简要介绍了拓扑GMR效应作为新兴拓扑光子学中一个很有前途的子课题。从一个概念上最小的模型开始,我们解释了基本的拓扑参数,相关的光学性质,实验实现和潜在的应用。我们讨论了最近感兴趣的话题,包括拓扑边缘态共振、确定性光束整形和模式匹配、连续体中的束缚态、单向共振和极化涡。最后,我们讨论了该主题的局限性、仍然存在的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological guided-mode resonances: basic theory, experiments, and applications
Guided-mode resonance (GMR) is a key principle for various nanophotonic elements in practice. In parallel, GMR structures offer an efficient experimental platform for fundamental study of novel wave phenomena because of its versatile capability to synthesize complicated potential distributions and analyze deep internal properties conveniently in the optical far-fields. In this paper, we provide a brief review of topological GMR effects as a promising subtopic of the emerging topological photonics. Starting from a conceptually minimal model, we explain basic topological parameters, associated optical properties, experimental realizations, and potential applications. We treat topics of recent interest including topological edge-state resonances, deterministic beam shaping and mode matching, bound states in the continuum, unidirectional resonances, and polarization vortices. We finally address limitations, remaining challenges, and perspective of the topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信