基于机器学习潜力的金刚石应力驱动晶界结构转变

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-07 DOI:10.1002/smll.202409092
Chenchen Lu, Zhen Li, Xinxin Sang, Zheyong Fan, Xujun Xu, Yingyan Zhang, Ke Xu, Yanhua Cheng, Junhua Zhao, Jin-Cheng Zheng, Ning Wei
{"title":"基于机器学习潜力的金刚石应力驱动晶界结构转变","authors":"Chenchen Lu,&nbsp;Zhen Li,&nbsp;Xinxin Sang,&nbsp;Zheyong Fan,&nbsp;Xujun Xu,&nbsp;Yingyan Zhang,&nbsp;Ke Xu,&nbsp;Yanhua Cheng,&nbsp;Junhua Zhao,&nbsp;Jin-Cheng Zheng,&nbsp;Ning Wei","doi":"10.1002/smll.202409092","DOIUrl":null,"url":null,"abstract":"<p>Understanding the structural dynamics of carbon grain boundaries, particularly in diamond, is essential for advancing next-generation device applications. Carbon's diverse allotropes, driven by its versatile chemical bonding, hold immense potential, yet analyzing these boundaries is challenging due to the limitations of experimental techniques and the computational demands of ab initio molecular dynamics simulations. In this study, a machine learning-based molecular dynamics potential, rigorously trained on ab initio data, that accurately predicts structural transitions in incoherent twin boundaries within diamond is introduced. This potential reveals the atomic-scale mechanisms driving these transitions and identifies an 80% reduction in interfacial thermal conductance during the grain boundary transition. These findings provide deep insights into the complex behavior of diamond grain boundaries, uncovering a novel mechanism that regulates thermal properties and paving the way for enhanced thermal management in diamond-based technologies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 16","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress-Driven Grain Boundary Structural Transition in Diamond by Machine Learning Potential\",\"authors\":\"Chenchen Lu,&nbsp;Zhen Li,&nbsp;Xinxin Sang,&nbsp;Zheyong Fan,&nbsp;Xujun Xu,&nbsp;Yingyan Zhang,&nbsp;Ke Xu,&nbsp;Yanhua Cheng,&nbsp;Junhua Zhao,&nbsp;Jin-Cheng Zheng,&nbsp;Ning Wei\",\"doi\":\"10.1002/smll.202409092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the structural dynamics of carbon grain boundaries, particularly in diamond, is essential for advancing next-generation device applications. Carbon's diverse allotropes, driven by its versatile chemical bonding, hold immense potential, yet analyzing these boundaries is challenging due to the limitations of experimental techniques and the computational demands of ab initio molecular dynamics simulations. In this study, a machine learning-based molecular dynamics potential, rigorously trained on ab initio data, that accurately predicts structural transitions in incoherent twin boundaries within diamond is introduced. This potential reveals the atomic-scale mechanisms driving these transitions and identifies an 80% reduction in interfacial thermal conductance during the grain boundary transition. These findings provide deep insights into the complex behavior of diamond grain boundaries, uncovering a novel mechanism that regulates thermal properties and paving the way for enhanced thermal management in diamond-based technologies.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 16\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409092\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409092","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解碳晶界的结构动力学,特别是在金刚石中,对于推进下一代器件的应用至关重要。碳的不同同素异形体,由其多功能化学键驱动,具有巨大的潜力,但由于实验技术的限制和从头算分子动力学模拟的计算需求,分析这些边界是具有挑战性的。在这项研究中,介绍了一种基于机器学习的分子动力学势,经过从头算数据的严格训练,可以准确预测金刚石内非相干孪晶界的结构转变。这一潜力揭示了驱动这些转变的原子尺度机制,并确定了晶界转变过程中界面热导率降低80%。这些发现为金刚石晶界的复杂行为提供了深刻的见解,揭示了一种调节热性能的新机制,并为加强金刚石基技术的热管理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stress-Driven Grain Boundary Structural Transition in Diamond by Machine Learning Potential

Stress-Driven Grain Boundary Structural Transition in Diamond by Machine Learning Potential

Stress-Driven Grain Boundary Structural Transition in Diamond by Machine Learning Potential

Understanding the structural dynamics of carbon grain boundaries, particularly in diamond, is essential for advancing next-generation device applications. Carbon's diverse allotropes, driven by its versatile chemical bonding, hold immense potential, yet analyzing these boundaries is challenging due to the limitations of experimental techniques and the computational demands of ab initio molecular dynamics simulations. In this study, a machine learning-based molecular dynamics potential, rigorously trained on ab initio data, that accurately predicts structural transitions in incoherent twin boundaries within diamond is introduced. This potential reveals the atomic-scale mechanisms driving these transitions and identifies an 80% reduction in interfacial thermal conductance during the grain boundary transition. These findings provide deep insights into the complex behavior of diamond grain boundaries, uncovering a novel mechanism that regulates thermal properties and paving the way for enhanced thermal management in diamond-based technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信