在异相花状SnS2@Few-Layer Ti3C2中构建内置电场以增强锂离子电容器中的电荷转移动力学

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaojun Wang, Jiaqing Qiao, Linwei Guo, Min Feng, Peng Wang, Zhiming Liu
{"title":"在异相花状SnS2@Few-Layer Ti3C2中构建内置电场以增强锂离子电容器中的电荷转移动力学","authors":"Xiaojun Wang,&nbsp;Jiaqing Qiao,&nbsp;Linwei Guo,&nbsp;Min Feng,&nbsp;Peng Wang,&nbsp;Zhiming Liu","doi":"10.1002/adfm.202422017","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion capacitors (LICs) are considered promising advanced energy storage devices due to their combination of high energy and power density. However, the inherent mismatch in charge storage rate between anode and cathode has forced search for anode materials with accelerated reaction kinetics. Herein, heterogeneous flower-like SnS<sub>2</sub>@few-layer Ti<sub>3</sub>C<sub>2</sub> (SnS<sub>2</sub>@f-Ti<sub>3</sub>C<sub>2</sub>) composites with asymmetric charge distribution through Sn─O─Ti bonded are prepared, which can regulate the electronic structure of active sites. Moreover, the presence of f-Ti<sub>3</sub>C<sub>2</sub> substrate suppresses the volume expansion of SnS<sub>2</sub>, while the SnS<sub>2</sub> alleviates the interlayer stacking and increases the active sites of f-Ti<sub>3</sub>C<sub>2</sub> during charging/discharging processes. Consequently, LICs consisting of SnS<sub>2</sub>@f-Ti<sub>3</sub>C<sub>2</sub> anode and activated carbon (AC) cathode display high power density (6.67 kW kg<sup>−1</sup>), high energy density (126.26 Wh kg<sup>−1</sup>), and superior stability. Furthermore, the density functional theory (DFT) calculations and experimental characterizations reveal that the built-in electric field, induced by modulating the work function of SnS<sub>2</sub> and f-Ti<sub>3</sub>C<sub>2</sub> MXene, enables the directional electron transfer between heterogeneous interfaces, thereby lowering the diffusion energy barrier of Li ions and boosting the electrochemical reaction kinetics of SnS<sub>2</sub>@f-Ti<sub>3</sub>C<sub>2</sub> composites. This work provides guidance for designing composites with unique surface-interface structures and modulating directional carrier transport between heterojunctions.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 32","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing Built-in Electric Field in Heterogeneous Flower-Like SnS2@Few-Layer Ti3C2 for Enhanced Charge Transfer Kinetics in Lithium-ion Capacitors\",\"authors\":\"Xiaojun Wang,&nbsp;Jiaqing Qiao,&nbsp;Linwei Guo,&nbsp;Min Feng,&nbsp;Peng Wang,&nbsp;Zhiming Liu\",\"doi\":\"10.1002/adfm.202422017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium-ion capacitors (LICs) are considered promising advanced energy storage devices due to their combination of high energy and power density. However, the inherent mismatch in charge storage rate between anode and cathode has forced search for anode materials with accelerated reaction kinetics. Herein, heterogeneous flower-like SnS<sub>2</sub>@few-layer Ti<sub>3</sub>C<sub>2</sub> (SnS<sub>2</sub>@f-Ti<sub>3</sub>C<sub>2</sub>) composites with asymmetric charge distribution through Sn─O─Ti bonded are prepared, which can regulate the electronic structure of active sites. Moreover, the presence of f-Ti<sub>3</sub>C<sub>2</sub> substrate suppresses the volume expansion of SnS<sub>2</sub>, while the SnS<sub>2</sub> alleviates the interlayer stacking and increases the active sites of f-Ti<sub>3</sub>C<sub>2</sub> during charging/discharging processes. Consequently, LICs consisting of SnS<sub>2</sub>@f-Ti<sub>3</sub>C<sub>2</sub> anode and activated carbon (AC) cathode display high power density (6.67 kW kg<sup>−1</sup>), high energy density (126.26 Wh kg<sup>−1</sup>), and superior stability. Furthermore, the density functional theory (DFT) calculations and experimental characterizations reveal that the built-in electric field, induced by modulating the work function of SnS<sub>2</sub> and f-Ti<sub>3</sub>C<sub>2</sub> MXene, enables the directional electron transfer between heterogeneous interfaces, thereby lowering the diffusion energy barrier of Li ions and boosting the electrochemical reaction kinetics of SnS<sub>2</sub>@f-Ti<sub>3</sub>C<sub>2</sub> composites. This work provides guidance for designing composites with unique surface-interface structures and modulating directional carrier transport between heterojunctions.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 32\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202422017\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202422017","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电容器由于其高能量密度和功率密度的结合而被认为是有前途的先进储能设备。然而,阳极和阴极之间固有的电荷存储速率不匹配迫使人们寻找具有加速反应动力学的阳极材料。通过Sn─O─Ti键合制备了电荷分布不对称的异相花状SnS2@few-layer Ti3C2 (SnS2@f-Ti3C2)复合材料,该复合材料可以调节活性位点的电子结构。此外,f-Ti3C2衬底的存在抑制了SnS2的体积膨胀,而SnS2在充放电过程中缓解了层间堆叠,增加了f-Ti3C2的活性位点。因此,由SnS2@f-Ti3C2阳极和活性炭(AC)阴极组成的锂离子电池具有高功率密度(6.67 kW kg−1)、高能量密度(126.26 Wh kg−1)和优越的稳定性。此外,密度泛函理论(DFT)计算和实验表征表明,通过调节SnS2和f-Ti3C2 MXene的功函数而产生的内嵌电场使电子在非均相界面间定向传递,从而降低了Li离子的扩散能垒,提高了SnS2@f-Ti3C2复合材料的电化学反应动力学。这项工作为设计具有独特表面界面结构的复合材料和调制异质结之间的定向载流子输运提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Constructing Built-in Electric Field in Heterogeneous Flower-Like SnS2@Few-Layer Ti3C2 for Enhanced Charge Transfer Kinetics in Lithium-ion Capacitors

Constructing Built-in Electric Field in Heterogeneous Flower-Like SnS2@Few-Layer Ti3C2 for Enhanced Charge Transfer Kinetics in Lithium-ion Capacitors

Constructing Built-in Electric Field in Heterogeneous Flower-Like SnS2@Few-Layer Ti3C2 for Enhanced Charge Transfer Kinetics in Lithium-ion Capacitors

Lithium-ion capacitors (LICs) are considered promising advanced energy storage devices due to their combination of high energy and power density. However, the inherent mismatch in charge storage rate between anode and cathode has forced search for anode materials with accelerated reaction kinetics. Herein, heterogeneous flower-like SnS2@few-layer Ti3C2 (SnS2@f-Ti3C2) composites with asymmetric charge distribution through Sn─O─Ti bonded are prepared, which can regulate the electronic structure of active sites. Moreover, the presence of f-Ti3C2 substrate suppresses the volume expansion of SnS2, while the SnS2 alleviates the interlayer stacking and increases the active sites of f-Ti3C2 during charging/discharging processes. Consequently, LICs consisting of SnS2@f-Ti3C2 anode and activated carbon (AC) cathode display high power density (6.67 kW kg−1), high energy density (126.26 Wh kg−1), and superior stability. Furthermore, the density functional theory (DFT) calculations and experimental characterizations reveal that the built-in electric field, induced by modulating the work function of SnS2 and f-Ti3C2 MXene, enables the directional electron transfer between heterogeneous interfaces, thereby lowering the diffusion energy barrier of Li ions and boosting the electrochemical reaction kinetics of SnS2@f-Ti3C2 composites. This work provides guidance for designing composites with unique surface-interface structures and modulating directional carrier transport between heterojunctions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信