致肥性FTO等位基因导致人类骨骼肌细胞加速发育、生长和胰岛素抵抗

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lu Guang, Shilin Ma, Ziyue Yao, Dan Song, Yu Chen, Shuqing Liu, Peng Wang, Jiali Su, Yuefan Wang, Lanfang Luo, Ng Shyh-Chang
{"title":"致肥性FTO等位基因导致人类骨骼肌细胞加速发育、生长和胰岛素抵抗","authors":"Lu Guang, Shilin Ma, Ziyue Yao, Dan Song, Yu Chen, Shuqing Liu, Peng Wang, Jiali Su, Yuefan Wang, Lanfang Luo, Ng Shyh-Chang","doi":"10.1038/s41467-024-53820-2","DOIUrl":null,"url":null,"abstract":"<p>Human GWAS have shown that obesogenic <i>FTO</i> polymorphisms correlate with lean mass, but the mechanisms have remained unclear. It is counterintuitive because lean mass is inversely correlated with obesity and metabolic diseases. Here, we use CRISPR to knock-in <i>FTO</i><sup>rs9939609-A</sup> into hESC-derived tissue models, to elucidate potentially hidden roles of <i>FTO</i> during development. We find that among human tissues, <i>FTO</i><sup>rs9939609-A</sup> most robustly affect human muscle progenitors’ proliferation, differentiation, senescence, thereby accelerating muscle developmental and metabolic aging. An edited <i>FTO</i><sup>rs9939609-A</sup> allele over-stimulates insulin/IGF signaling via increased muscle-specific enhancer H3K27ac, FTO expression and m<sup>6</sup>A demethylation of <i>H19</i> lncRNA and <i>IGF2</i> mRNA, with excessive insulin/IGF signaling leading to insulin resistance upon replicative aging or exposure to high fat diet. This FTO-m<sup>6</sup>A-<i>H19/IGF2</i> circuit may explain paradoxical GWAS findings linking <i>FTO</i><sup>rs9939609-A</sup> to both leanness and obesity. Our results provide a proof-of-principle that CRISPR-hESC-tissue platforms can be harnessed to resolve puzzles in human metabolism.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An obesogenic FTO allele causes accelerated development, growth and insulin resistance in human skeletal muscle cells\",\"authors\":\"Lu Guang, Shilin Ma, Ziyue Yao, Dan Song, Yu Chen, Shuqing Liu, Peng Wang, Jiali Su, Yuefan Wang, Lanfang Luo, Ng Shyh-Chang\",\"doi\":\"10.1038/s41467-024-53820-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human GWAS have shown that obesogenic <i>FTO</i> polymorphisms correlate with lean mass, but the mechanisms have remained unclear. It is counterintuitive because lean mass is inversely correlated with obesity and metabolic diseases. Here, we use CRISPR to knock-in <i>FTO</i><sup>rs9939609-A</sup> into hESC-derived tissue models, to elucidate potentially hidden roles of <i>FTO</i> during development. We find that among human tissues, <i>FTO</i><sup>rs9939609-A</sup> most robustly affect human muscle progenitors’ proliferation, differentiation, senescence, thereby accelerating muscle developmental and metabolic aging. An edited <i>FTO</i><sup>rs9939609-A</sup> allele over-stimulates insulin/IGF signaling via increased muscle-specific enhancer H3K27ac, FTO expression and m<sup>6</sup>A demethylation of <i>H19</i> lncRNA and <i>IGF2</i> mRNA, with excessive insulin/IGF signaling leading to insulin resistance upon replicative aging or exposure to high fat diet. This FTO-m<sup>6</sup>A-<i>H19/IGF2</i> circuit may explain paradoxical GWAS findings linking <i>FTO</i><sup>rs9939609-A</sup> to both leanness and obesity. Our results provide a proof-of-principle that CRISPR-hESC-tissue platforms can be harnessed to resolve puzzles in human metabolism.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53820-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53820-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类GWAS已经表明致肥性FTO多态性与瘦质量相关,但其机制尚不清楚。这是违反直觉的,因为瘦体重与肥胖和代谢疾病呈负相关。在这里,我们使用CRISPR将FTOrs9939609-A敲入hesc衍生的组织模型中,以阐明FTO在发育过程中潜在的隐藏作用。我们发现,在人体组织中,FTOrs9939609-A对人体肌肉祖细胞的增殖、分化、衰老的影响最为强烈,从而加速肌肉的发育和代谢衰老。经过编辑的FTOrs9939609-A等位基因通过增加肌肉特异性增强子H3K27ac、FTO表达和H19 lncRNA和IGF2 mRNA的m6A去甲基化,过度刺激胰岛素/IGF信号传导,导致复制衰老或暴露于高脂肪饮食时胰岛素抵抗。FTO-m6A-H19/IGF2回路可以解释将FTOrs9939609-A与瘦和肥胖联系起来的矛盾的GWAS发现。我们的结果提供了一个原理证明,crispr - hesc组织平台可以用来解决人类代谢中的难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An obesogenic FTO allele causes accelerated development, growth and insulin resistance in human skeletal muscle cells

An obesogenic FTO allele causes accelerated development, growth and insulin resistance in human skeletal muscle cells

Human GWAS have shown that obesogenic FTO polymorphisms correlate with lean mass, but the mechanisms have remained unclear. It is counterintuitive because lean mass is inversely correlated with obesity and metabolic diseases. Here, we use CRISPR to knock-in FTOrs9939609-A into hESC-derived tissue models, to elucidate potentially hidden roles of FTO during development. We find that among human tissues, FTOrs9939609-A most robustly affect human muscle progenitors’ proliferation, differentiation, senescence, thereby accelerating muscle developmental and metabolic aging. An edited FTOrs9939609-A allele over-stimulates insulin/IGF signaling via increased muscle-specific enhancer H3K27ac, FTO expression and m6A demethylation of H19 lncRNA and IGF2 mRNA, with excessive insulin/IGF signaling leading to insulin resistance upon replicative aging or exposure to high fat diet. This FTO-m6A-H19/IGF2 circuit may explain paradoxical GWAS findings linking FTOrs9939609-A to both leanness and obesity. Our results provide a proof-of-principle that CRISPR-hESC-tissue platforms can be harnessed to resolve puzzles in human metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信