Liting Lin , Qingrong Li , Yan Yang , Cong Zhang , Wenqi Wang , Fan Ni , Xianwen Wang
{"title":"CaGA纳米酶在溃疡性结肠炎治疗中抑制氧化应激和保护线粒体功能。","authors":"Liting Lin , Qingrong Li , Yan Yang , Cong Zhang , Wenqi Wang , Fan Ni , Xianwen Wang","doi":"10.1016/j.actbio.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>Ulcerative colitis (UC) is a long-term inflammatory bowel disease characterized by intense inflammation of the colorectal mucosa. Overproduction of reactive oxygen species exacerbates the progression of UC, which is linked to mitochondrial impairment and dysbiosis of the intestinal microbiota. CaGA nanozymes have demonstrated efficacy in the treatment of UC. The modulation of M1 and M2 polarization of macrophages by CaGA nanozymes has been demonstrated to be useful in reducing inflammation. Furthermore, CaGA nanozymes regulate the M1 and M2 polarization of macrophages, efficiently decreasing inflammation. The oral delivery of CaGA nanozymes resulted in their enrichment in inflamed areas of the colon and effectively reduced colonic damage in mice with DSS-induced colitis by improving the repair of the intestinal barrier. An investigation of 16S rDNA sequencing revealed that CaGA nanozymes regulate populations of both pathogenic and helpful bacteria and impact the progression of ulcerative colitis by influencing the tricarboxylic acid (TCA) cycle. Thus, CaGA nanozymes may be employed in the management of ulcerative colitis to control the intestinal milieu and improve the preservation of the intestinal barrier by decreasing the invasion of inflammatory cells and restoring mitochondrial activity.</div></div><div><h3>Statement of significance</h3><div>CaGA nanozymes exhibit multifunctional enzymatic activity, effectively eliminating cellular RONS with robust antioxidant capacity. CaGA nanoenzymes promote macrophage M1 to M2 polarization and produce anti-inflammatory effects. CaGA nanozymes increase cell viability by restoring impaired mitochondrial function, reducing reactive oxygen species (ROS) production, and restoring the ability of mitochondria to produce ATP. CaGA nanozymes modulate intestinal flora diversity and composition, potentially influencing inflammatory pathways via aromatic compound metabolism. They participate in cellular energy and biosynthesis, regulating ulcerative colitis (UC)-related intestinal function through the tricarboxylic acid (TCA) and urea cycles. Calcium ions bind to GA nanomedicine and small particles are readily absorbed by inflammatory cells, preventing diarrhea from being rapidly excreted.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"196 ","pages":"Pages 380-398"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CaGA nanozymes inhibit oxidative stress and protect mitochondrial function in ulcerative colitis therapy\",\"authors\":\"Liting Lin , Qingrong Li , Yan Yang , Cong Zhang , Wenqi Wang , Fan Ni , Xianwen Wang\",\"doi\":\"10.1016/j.actbio.2025.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ulcerative colitis (UC) is a long-term inflammatory bowel disease characterized by intense inflammation of the colorectal mucosa. Overproduction of reactive oxygen species exacerbates the progression of UC, which is linked to mitochondrial impairment and dysbiosis of the intestinal microbiota. CaGA nanozymes have demonstrated efficacy in the treatment of UC. The modulation of M1 and M2 polarization of macrophages by CaGA nanozymes has been demonstrated to be useful in reducing inflammation. Furthermore, CaGA nanozymes regulate the M1 and M2 polarization of macrophages, efficiently decreasing inflammation. The oral delivery of CaGA nanozymes resulted in their enrichment in inflamed areas of the colon and effectively reduced colonic damage in mice with DSS-induced colitis by improving the repair of the intestinal barrier. An investigation of 16S rDNA sequencing revealed that CaGA nanozymes regulate populations of both pathogenic and helpful bacteria and impact the progression of ulcerative colitis by influencing the tricarboxylic acid (TCA) cycle. Thus, CaGA nanozymes may be employed in the management of ulcerative colitis to control the intestinal milieu and improve the preservation of the intestinal barrier by decreasing the invasion of inflammatory cells and restoring mitochondrial activity.</div></div><div><h3>Statement of significance</h3><div>CaGA nanozymes exhibit multifunctional enzymatic activity, effectively eliminating cellular RONS with robust antioxidant capacity. CaGA nanoenzymes promote macrophage M1 to M2 polarization and produce anti-inflammatory effects. CaGA nanozymes increase cell viability by restoring impaired mitochondrial function, reducing reactive oxygen species (ROS) production, and restoring the ability of mitochondria to produce ATP. CaGA nanozymes modulate intestinal flora diversity and composition, potentially influencing inflammatory pathways via aromatic compound metabolism. They participate in cellular energy and biosynthesis, regulating ulcerative colitis (UC)-related intestinal function through the tricarboxylic acid (TCA) and urea cycles. Calcium ions bind to GA nanomedicine and small particles are readily absorbed by inflammatory cells, preventing diarrhea from being rapidly excreted.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"196 \",\"pages\":\"Pages 380-398\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125001655\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125001655","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
CaGA nanozymes inhibit oxidative stress and protect mitochondrial function in ulcerative colitis therapy
Ulcerative colitis (UC) is a long-term inflammatory bowel disease characterized by intense inflammation of the colorectal mucosa. Overproduction of reactive oxygen species exacerbates the progression of UC, which is linked to mitochondrial impairment and dysbiosis of the intestinal microbiota. CaGA nanozymes have demonstrated efficacy in the treatment of UC. The modulation of M1 and M2 polarization of macrophages by CaGA nanozymes has been demonstrated to be useful in reducing inflammation. Furthermore, CaGA nanozymes regulate the M1 and M2 polarization of macrophages, efficiently decreasing inflammation. The oral delivery of CaGA nanozymes resulted in their enrichment in inflamed areas of the colon and effectively reduced colonic damage in mice with DSS-induced colitis by improving the repair of the intestinal barrier. An investigation of 16S rDNA sequencing revealed that CaGA nanozymes regulate populations of both pathogenic and helpful bacteria and impact the progression of ulcerative colitis by influencing the tricarboxylic acid (TCA) cycle. Thus, CaGA nanozymes may be employed in the management of ulcerative colitis to control the intestinal milieu and improve the preservation of the intestinal barrier by decreasing the invasion of inflammatory cells and restoring mitochondrial activity.
Statement of significance
CaGA nanozymes exhibit multifunctional enzymatic activity, effectively eliminating cellular RONS with robust antioxidant capacity. CaGA nanoenzymes promote macrophage M1 to M2 polarization and produce anti-inflammatory effects. CaGA nanozymes increase cell viability by restoring impaired mitochondrial function, reducing reactive oxygen species (ROS) production, and restoring the ability of mitochondria to produce ATP. CaGA nanozymes modulate intestinal flora diversity and composition, potentially influencing inflammatory pathways via aromatic compound metabolism. They participate in cellular energy and biosynthesis, regulating ulcerative colitis (UC)-related intestinal function through the tricarboxylic acid (TCA) and urea cycles. Calcium ions bind to GA nanomedicine and small particles are readily absorbed by inflammatory cells, preventing diarrhea from being rapidly excreted.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.