黑子酸生成反式黑子酸脱羧酶Tad1的机制和结构研究。

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-03-05 eCollection Date: 2025-03-01 DOI:10.1093/pnasnexus/pgaf059
Liujuan Zheng, Wei Li, Marvin Christ, Nicole Paczia, Wolfgang Buckel, Christopher-Nils Mais, Michael Bölker, Johannes Freitag, Gert Bange
{"title":"黑子酸生成反式黑子酸脱羧酶Tad1的机制和结构研究。","authors":"Liujuan Zheng, Wei Li, Marvin Christ, Nicole Paczia, Wolfgang Buckel, Christopher-Nils Mais, Michael Bölker, Johannes Freitag, Gert Bange","doi":"10.1093/pnasnexus/pgaf059","DOIUrl":null,"url":null,"abstract":"<p><p>Itaconic acid belongs to the high-value precursors for the production of biomass-based industrial compounds. It originates from the tricarboxylic acid cycle, and depending on the organism, it is produced by different biosynthetic routes. The basidiomycete fungus <i>Ustilago maydis</i> synthesizes itaconic acid via isomerization of <i>cis</i>-aconitic acid to <i>trans</i>-aconitic acid, and subsequent decarboxylation catalyzed by the <i>trans</i>-aconitate decarboxylase Tad1, which belongs to the aspartase/fumarase superfamily. Since no other decarboxylase has been identified within this protein superfamily, Tad1 constitutes a novel type of decarboxylase. Here, we present high-resolution crystal structures of Tad1, which, together with mutational analysis and nuclear magnetic resonance spectroscopy measurements, provide insight into the molecular mechanism of Tad1-dependent decarboxylation. Specifically, our study shows that decarboxylation is favored in acidic conditions, requires protonation as well as migration of a double bond, and coincides with structural rearrangements in the catalytic center. In summary, our study elucidates the molecular mechanism underlying a novel type of enzymatic decarboxylation and provides a starting point for protein engineering aimed at optimizing the efficient production of itaconic acid.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 3","pages":"pgaf059"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic and structural insights into the itaconate-producing <i>trans</i>-aconitate decarboxylase Tad1.\",\"authors\":\"Liujuan Zheng, Wei Li, Marvin Christ, Nicole Paczia, Wolfgang Buckel, Christopher-Nils Mais, Michael Bölker, Johannes Freitag, Gert Bange\",\"doi\":\"10.1093/pnasnexus/pgaf059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Itaconic acid belongs to the high-value precursors for the production of biomass-based industrial compounds. It originates from the tricarboxylic acid cycle, and depending on the organism, it is produced by different biosynthetic routes. The basidiomycete fungus <i>Ustilago maydis</i> synthesizes itaconic acid via isomerization of <i>cis</i>-aconitic acid to <i>trans</i>-aconitic acid, and subsequent decarboxylation catalyzed by the <i>trans</i>-aconitate decarboxylase Tad1, which belongs to the aspartase/fumarase superfamily. Since no other decarboxylase has been identified within this protein superfamily, Tad1 constitutes a novel type of decarboxylase. Here, we present high-resolution crystal structures of Tad1, which, together with mutational analysis and nuclear magnetic resonance spectroscopy measurements, provide insight into the molecular mechanism of Tad1-dependent decarboxylation. Specifically, our study shows that decarboxylation is favored in acidic conditions, requires protonation as well as migration of a double bond, and coincides with structural rearrangements in the catalytic center. In summary, our study elucidates the molecular mechanism underlying a novel type of enzymatic decarboxylation and provides a starting point for protein engineering aimed at optimizing the efficient production of itaconic acid.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 3\",\"pages\":\"pgaf059\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

衣康酸属于生产生物质基工业化合物的高价值前体。它起源于三羧酸循环,并根据生物体的不同,通过不同的生物合成途径产生。黑子菌Ustilago maydis通过顺式乌头酸异构化为反式乌头酸,然后由反式乌头脱羧酶Tad1催化脱羧合成衣康酸,该脱羧酶属于天冬氨酸酶/富马酸超家族。由于在该蛋白超家族中尚未发现其他脱羧酶,因此Tad1构成了一种新型脱羧酶。在这里,我们展示了Tad1的高分辨率晶体结构,以及突变分析和核磁共振波谱测量,为Tad1依赖性脱羧的分子机制提供了见解。具体来说,我们的研究表明,脱羧在酸性条件下更有利,需要质子化和双键的迁移,并且与催化中心的结构重排相吻合。总之,我们的研究阐明了一种新型酶脱羧的分子机制,并为优化衣康酸高效生产的蛋白质工程提供了一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic and structural insights into the itaconate-producing trans-aconitate decarboxylase Tad1.

Itaconic acid belongs to the high-value precursors for the production of biomass-based industrial compounds. It originates from the tricarboxylic acid cycle, and depending on the organism, it is produced by different biosynthetic routes. The basidiomycete fungus Ustilago maydis synthesizes itaconic acid via isomerization of cis-aconitic acid to trans-aconitic acid, and subsequent decarboxylation catalyzed by the trans-aconitate decarboxylase Tad1, which belongs to the aspartase/fumarase superfamily. Since no other decarboxylase has been identified within this protein superfamily, Tad1 constitutes a novel type of decarboxylase. Here, we present high-resolution crystal structures of Tad1, which, together with mutational analysis and nuclear magnetic resonance spectroscopy measurements, provide insight into the molecular mechanism of Tad1-dependent decarboxylation. Specifically, our study shows that decarboxylation is favored in acidic conditions, requires protonation as well as migration of a double bond, and coincides with structural rearrangements in the catalytic center. In summary, our study elucidates the molecular mechanism underlying a novel type of enzymatic decarboxylation and provides a starting point for protein engineering aimed at optimizing the efficient production of itaconic acid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信