用于基本粒子跟踪和量热的3d分段塑料闪烁体探测器的增材制造。

Tim Weber, Andrey Boyarintsev, Umut Kose, Botao Li, Davide Sgalaberna, Tetiana Sibilieva, Johannes Wüthrich, Siddartha Berns, Eric Boillat, Albert De Roeck, Till Dieminger, Matthew Franks, Boris Grynyov, Sylvain Hugon, Carsten Jaeschke, André Rubbia
{"title":"用于基本粒子跟踪和量热的3d分段塑料闪烁体探测器的增材制造。","authors":"Tim Weber, Andrey Boyarintsev, Umut Kose, Botao Li, Davide Sgalaberna, Tetiana Sibilieva, Johannes Wüthrich, Siddartha Berns, Eric Boillat, Albert De Roeck, Till Dieminger, Matthew Franks, Boris Grynyov, Sylvain Hugon, Carsten Jaeschke, André Rubbia","doi":"10.1038/s44172-025-00371-z","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic scintillators, segmented into small, optically isolated voxels, are used for detecting elementary particles and provide reliable particle identification with nanosecond time resolution. Building large detectors requires the production and precise alignment of millions of individual units, a process that is time-consuming, cost-intensive, and difficult to scale. Here, we introduce an additive manufacturing process chain capable of producing plastic-based scintillator detectors as a single, monolithic structure. Unlike previous manufacturing methods, this approach consolidates all production steps within one machine, creating a detector that integrates and precisely aligns its voxels into a unified structure. By combining fused deposition modeling with an injection process optimized for fabricating scintillation geometries, we produced an additively manufactured fine-granularity plastic scintillator detector with performance comparable to the state of the art, and demonstrated its capabilities for 3D tracking of elementary particles and energy-loss measurement. This work presents an efficient and economical production process for manufacturing plastic-based scintillator detectors, adaptable to various sizes and geometries.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"41"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882974/pdf/","citationCount":"0","resultStr":"{\"title\":\"Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles.\",\"authors\":\"Tim Weber, Andrey Boyarintsev, Umut Kose, Botao Li, Davide Sgalaberna, Tetiana Sibilieva, Johannes Wüthrich, Siddartha Berns, Eric Boillat, Albert De Roeck, Till Dieminger, Matthew Franks, Boris Grynyov, Sylvain Hugon, Carsten Jaeschke, André Rubbia\",\"doi\":\"10.1038/s44172-025-00371-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastic scintillators, segmented into small, optically isolated voxels, are used for detecting elementary particles and provide reliable particle identification with nanosecond time resolution. Building large detectors requires the production and precise alignment of millions of individual units, a process that is time-consuming, cost-intensive, and difficult to scale. Here, we introduce an additive manufacturing process chain capable of producing plastic-based scintillator detectors as a single, monolithic structure. Unlike previous manufacturing methods, this approach consolidates all production steps within one machine, creating a detector that integrates and precisely aligns its voxels into a unified structure. By combining fused deposition modeling with an injection process optimized for fabricating scintillation geometries, we produced an additively manufactured fine-granularity plastic scintillator detector with performance comparable to the state of the art, and demonstrated its capabilities for 3D tracking of elementary particles and energy-loss measurement. This work presents an efficient and economical production process for manufacturing plastic-based scintillator detectors, adaptable to various sizes and geometries.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882974/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00371-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00371-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

塑料闪烁体,分割成小的,光学隔离体素,用于检测基本粒子,并提供可靠的粒子识别与纳秒的时间分辨率。建造大型探测器需要生产和精确校准数百万个单独的单元,这是一个耗时、成本高且难以规模化的过程。在这里,我们介绍了一种增材制造工艺链,能够将基于塑料的闪烁体探测器作为单一的单片结构生产。与以前的制造方法不同,这种方法将所有生产步骤整合在一台机器中,创建了一个集成并精确地将其体素对齐到统一结构中的探测器。通过将熔融沉积建模与为制造闪烁几何形状而优化的注射工艺相结合,我们生产了一种增材制造的细粒度塑料闪烁体探测器,其性能可与目前的技术水平相媲美,并展示了其对基本粒子的3D跟踪和能量损失测量的能力。本工作提出了一种高效、经济的生产工艺,可用于制造各种尺寸和几何形状的塑料闪烁体探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles.

Plastic scintillators, segmented into small, optically isolated voxels, are used for detecting elementary particles and provide reliable particle identification with nanosecond time resolution. Building large detectors requires the production and precise alignment of millions of individual units, a process that is time-consuming, cost-intensive, and difficult to scale. Here, we introduce an additive manufacturing process chain capable of producing plastic-based scintillator detectors as a single, monolithic structure. Unlike previous manufacturing methods, this approach consolidates all production steps within one machine, creating a detector that integrates and precisely aligns its voxels into a unified structure. By combining fused deposition modeling with an injection process optimized for fabricating scintillation geometries, we produced an additively manufactured fine-granularity plastic scintillator detector with performance comparable to the state of the art, and demonstrated its capabilities for 3D tracking of elementary particles and energy-loss measurement. This work presents an efficient and economical production process for manufacturing plastic-based scintillator detectors, adaptable to various sizes and geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信