Dmitry Dobrykh, Konstantin Grotov, Anna Mikhailovskaya, Dmytro Vovchuk, Vladyslav Tkach, Mykola Khobzei, Anton Kharchevskii, Aviel Glam, Pavel Ginzburg
{"title":"三维进化设计的超材料散射最大化。","authors":"Dmitry Dobrykh, Konstantin Grotov, Anna Mikhailovskaya, Dmytro Vovchuk, Vladyslav Tkach, Mykola Khobzei, Anton Kharchevskii, Aviel Glam, Pavel Ginzburg","doi":"10.1038/s44172-025-00349-x","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth in drone air traffic calls for enhanced radar surveillance systems to ensure reliable detection in challenging conditions. Increasing radar scattering cross-section can greatly improve detection reliability in civilian applications. Here, we introduce a concept of evolutionarily designed metamaterials in the form of multilayer stacks of arrays, featuring strongly coupled electric and magnetic resonators. These structures demonstrate a broadband end-fire scattering cross-section exceeding 1 m² at 10 GHz and, despite their compact footprint, achieve over 10% fractional bandwidth, meeting essential radar requirements for high-range resolution. While scattering cross-section and bandwidth are typically contradictory in resonant structures, this trend is circumvented by applying the resonance cascading principle, wherein a series of closely spaced, spectrally aligned resonant multipoles create a coherent response. The resonance cascading is engineered with the aid of multi-objective optimization, implemented on top of a genetic algorithm, operating in a large search space, encompassing over 100 independent variables. Experimentally realized parameters match typical scattering cross-sections of large airborne targets. Consequently, these performance characteristics enable the exploration of highly scattering structures as identifiers for small airborne targets, supporting effective radar-based air traffic monitoring in civilian applications, which we demonstrate through outdoor experiments using the DJI Mini 2 drone.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"40"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882990/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D evolutionarily designed metamaterials for scattering maximization.\",\"authors\":\"Dmitry Dobrykh, Konstantin Grotov, Anna Mikhailovskaya, Dmytro Vovchuk, Vladyslav Tkach, Mykola Khobzei, Anton Kharchevskii, Aviel Glam, Pavel Ginzburg\",\"doi\":\"10.1038/s44172-025-00349-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid growth in drone air traffic calls for enhanced radar surveillance systems to ensure reliable detection in challenging conditions. Increasing radar scattering cross-section can greatly improve detection reliability in civilian applications. Here, we introduce a concept of evolutionarily designed metamaterials in the form of multilayer stacks of arrays, featuring strongly coupled electric and magnetic resonators. These structures demonstrate a broadband end-fire scattering cross-section exceeding 1 m² at 10 GHz and, despite their compact footprint, achieve over 10% fractional bandwidth, meeting essential radar requirements for high-range resolution. While scattering cross-section and bandwidth are typically contradictory in resonant structures, this trend is circumvented by applying the resonance cascading principle, wherein a series of closely spaced, spectrally aligned resonant multipoles create a coherent response. The resonance cascading is engineered with the aid of multi-objective optimization, implemented on top of a genetic algorithm, operating in a large search space, encompassing over 100 independent variables. Experimentally realized parameters match typical scattering cross-sections of large airborne targets. Consequently, these performance characteristics enable the exploration of highly scattering structures as identifiers for small airborne targets, supporting effective radar-based air traffic monitoring in civilian applications, which we demonstrate through outdoor experiments using the DJI Mini 2 drone.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00349-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00349-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D evolutionarily designed metamaterials for scattering maximization.
The rapid growth in drone air traffic calls for enhanced radar surveillance systems to ensure reliable detection in challenging conditions. Increasing radar scattering cross-section can greatly improve detection reliability in civilian applications. Here, we introduce a concept of evolutionarily designed metamaterials in the form of multilayer stacks of arrays, featuring strongly coupled electric and magnetic resonators. These structures demonstrate a broadband end-fire scattering cross-section exceeding 1 m² at 10 GHz and, despite their compact footprint, achieve over 10% fractional bandwidth, meeting essential radar requirements for high-range resolution. While scattering cross-section and bandwidth are typically contradictory in resonant structures, this trend is circumvented by applying the resonance cascading principle, wherein a series of closely spaced, spectrally aligned resonant multipoles create a coherent response. The resonance cascading is engineered with the aid of multi-objective optimization, implemented on top of a genetic algorithm, operating in a large search space, encompassing over 100 independent variables. Experimentally realized parameters match typical scattering cross-sections of large airborne targets. Consequently, these performance characteristics enable the exploration of highly scattering structures as identifiers for small airborne targets, supporting effective radar-based air traffic monitoring in civilian applications, which we demonstrate through outdoor experiments using the DJI Mini 2 drone.