Mahmoud M Elymany, Nadia A Elsonbaty, Aymen FLah, Lukas Prokop, Habib Kraiem, Mohamed A Enany, Ahmed A Shaier
{"title":"电动汽车混合励磁永磁同步电机最大转矩点跟踪的先进方法。","authors":"Mahmoud M Elymany, Nadia A Elsonbaty, Aymen FLah, Lukas Prokop, Habib Kraiem, Mohamed A Enany, Ahmed A Shaier","doi":"10.1038/s41598-025-92466-y","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript presents an innovative control strategy for the Hybrid Excitation Permanent Magnet Synchronous Motor (HEPMSM) designed for electric vehicle (EV) applications. The strategy combines Maximum Torque Point Tracking (MTPT) and Maximum Torque Per Ampere (MTPA) techniques to track the ideal torque-speed profile, ensuring maximum torque at low speeds for starting and climbing, and high power at higher speeds for cruising. A novel unidirectional excitation current method is proposed to replace traditional bidirectional field current control, eliminating the risk of permanent magnet demagnetization, reducing copper losses, and increasing efficiency. This approach extends the constant power (CP) region by a 4.2:1 ratio. The manuscript also introduces a detailed mathematical model, considering both iron core losses and their impact on the EV profile. Additionally, the Multi-Objective Ant Lion Optimizer (MOALO) algorithm is used in two stages: first to optimize the hybridization ratio (HR) and base speed (N<sub>b</sub>), and second to analyze the effect of varying the hybridization ratio while maintaining constrained output power. The proposed strategy is validated through MATLAB simulations, demonstrating its effectiveness in achieving high acceleration, efficiency, and reliability for EV applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7707"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced methodology for maximum torque point tracking of hybrid excitation PMSM for EVs.\",\"authors\":\"Mahmoud M Elymany, Nadia A Elsonbaty, Aymen FLah, Lukas Prokop, Habib Kraiem, Mohamed A Enany, Ahmed A Shaier\",\"doi\":\"10.1038/s41598-025-92466-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This manuscript presents an innovative control strategy for the Hybrid Excitation Permanent Magnet Synchronous Motor (HEPMSM) designed for electric vehicle (EV) applications. The strategy combines Maximum Torque Point Tracking (MTPT) and Maximum Torque Per Ampere (MTPA) techniques to track the ideal torque-speed profile, ensuring maximum torque at low speeds for starting and climbing, and high power at higher speeds for cruising. A novel unidirectional excitation current method is proposed to replace traditional bidirectional field current control, eliminating the risk of permanent magnet demagnetization, reducing copper losses, and increasing efficiency. This approach extends the constant power (CP) region by a 4.2:1 ratio. The manuscript also introduces a detailed mathematical model, considering both iron core losses and their impact on the EV profile. Additionally, the Multi-Objective Ant Lion Optimizer (MOALO) algorithm is used in two stages: first to optimize the hybridization ratio (HR) and base speed (N<sub>b</sub>), and second to analyze the effect of varying the hybridization ratio while maintaining constrained output power. The proposed strategy is validated through MATLAB simulations, demonstrating its effectiveness in achieving high acceleration, efficiency, and reliability for EV applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"7707\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-92466-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92466-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Advanced methodology for maximum torque point tracking of hybrid excitation PMSM for EVs.
This manuscript presents an innovative control strategy for the Hybrid Excitation Permanent Magnet Synchronous Motor (HEPMSM) designed for electric vehicle (EV) applications. The strategy combines Maximum Torque Point Tracking (MTPT) and Maximum Torque Per Ampere (MTPA) techniques to track the ideal torque-speed profile, ensuring maximum torque at low speeds for starting and climbing, and high power at higher speeds for cruising. A novel unidirectional excitation current method is proposed to replace traditional bidirectional field current control, eliminating the risk of permanent magnet demagnetization, reducing copper losses, and increasing efficiency. This approach extends the constant power (CP) region by a 4.2:1 ratio. The manuscript also introduces a detailed mathematical model, considering both iron core losses and their impact on the EV profile. Additionally, the Multi-Objective Ant Lion Optimizer (MOALO) algorithm is used in two stages: first to optimize the hybridization ratio (HR) and base speed (Nb), and second to analyze the effect of varying the hybridization ratio while maintaining constrained output power. The proposed strategy is validated through MATLAB simulations, demonstrating its effectiveness in achieving high acceleration, efficiency, and reliability for EV applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.