Shivangi Mathur, Ambika Chaturvedi and Rajiv Ranjan
{"title":"基于rnai的纳米配方的进展:革命性的作物保护和农业抗逆性。","authors":"Shivangi Mathur, Ambika Chaturvedi and Rajiv Ranjan","doi":"10.1039/D5NA00044K","DOIUrl":null,"url":null,"abstract":"<p >Nucleic acid-based therapeutics have the ability to tackle a wide range of diseases and stress tolerance that present significant obstacles for conventional approaches in agriculture. RNA-based medicines have become a promising approach, using nanoformulation treatments to specifically target certain diseases. Nanoformulations offer numerous benefits in comparison to alternative treatment methods, such as precise administration, minimal toxicity, and medication loading compatibility due to their bioactivity. There are a variety of nanoformulations available today, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanogels, and solid lipid nanoparticles (SLNs). RNA-based therapy employs intracellular gene nanoparticles containing messenger RNA (mRNA), which play an important role in stress management and pest as well as disease control. The adoption of mRNA-based technology paves the way for future technological progress. This review focuses on elucidating the process underlying the development of RNA interference (RNAi) and the diverse array of nanocarriers employed for the transportation of RNAi. Currently, this technique is being employed in the field of crop protection to combat diseases, pests, and environmental stress. The article highlights the benefits of RNAi mediated nanoformulations and discusses the significant obstacles that must be overcome to improve the viability of this technology for future applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 7","pages":" 1768-1783"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in RNAi-based nanoformulations: revolutionizing crop protection and stress tolerance in agriculture\",\"authors\":\"Shivangi Mathur, Ambika Chaturvedi and Rajiv Ranjan\",\"doi\":\"10.1039/D5NA00044K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nucleic acid-based therapeutics have the ability to tackle a wide range of diseases and stress tolerance that present significant obstacles for conventional approaches in agriculture. RNA-based medicines have become a promising approach, using nanoformulation treatments to specifically target certain diseases. Nanoformulations offer numerous benefits in comparison to alternative treatment methods, such as precise administration, minimal toxicity, and medication loading compatibility due to their bioactivity. There are a variety of nanoformulations available today, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanogels, and solid lipid nanoparticles (SLNs). RNA-based therapy employs intracellular gene nanoparticles containing messenger RNA (mRNA), which play an important role in stress management and pest as well as disease control. The adoption of mRNA-based technology paves the way for future technological progress. This review focuses on elucidating the process underlying the development of RNA interference (RNAi) and the diverse array of nanocarriers employed for the transportation of RNAi. Currently, this technique is being employed in the field of crop protection to combat diseases, pests, and environmental stress. The article highlights the benefits of RNAi mediated nanoformulations and discusses the significant obstacles that must be overcome to improve the viability of this technology for future applications.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" 7\",\"pages\":\" 1768-1783\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00044k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00044k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in RNAi-based nanoformulations: revolutionizing crop protection and stress tolerance in agriculture
Nucleic acid-based therapeutics have the ability to tackle a wide range of diseases and stress tolerance that present significant obstacles for conventional approaches in agriculture. RNA-based medicines have become a promising approach, using nanoformulation treatments to specifically target certain diseases. Nanoformulations offer numerous benefits in comparison to alternative treatment methods, such as precise administration, minimal toxicity, and medication loading compatibility due to their bioactivity. There are a variety of nanoformulations available today, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanogels, and solid lipid nanoparticles (SLNs). RNA-based therapy employs intracellular gene nanoparticles containing messenger RNA (mRNA), which play an important role in stress management and pest as well as disease control. The adoption of mRNA-based technology paves the way for future technological progress. This review focuses on elucidating the process underlying the development of RNA interference (RNAi) and the diverse array of nanocarriers employed for the transportation of RNAi. Currently, this technique is being employed in the field of crop protection to combat diseases, pests, and environmental stress. The article highlights the benefits of RNAi mediated nanoformulations and discusses the significant obstacles that must be overcome to improve the viability of this technology for future applications.