从活体材料组装构建复杂的细菌原细胞。

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Can Xu, Mei Li, Nicolas Martin, Stephen Mann
{"title":"从活体材料组装构建复杂的细菌原细胞。","authors":"Can Xu, Mei Li, Nicolas Martin, Stephen Mann","doi":"10.1038/s41596-025-01148-6","DOIUrl":null,"url":null,"abstract":"<p><p>Protocell research offers diverse opportunities to understand cellular processes and the foundations of life and holds attractive potential applications across various fields. However, it is still a formidable task to construct a true-to-life synthetic cell with high organizational and functional complexity. Here we present a protocol for constructing bacteriogenic protocells by employing prokaryotes as on-site repositories of compositional, functional and structural building blocks to address this challenge. This approach is based on the capture and processing of two spatially segregated bacterial colonies within individual coacervate microdroplets to produce membrane-bounded, molecularly crowded, compositionally, structurally and functionally complex synthetic cells. The bacteriogenic protocells inherit sufficient biological components from their bacterial building units to exhibit highly integrated life-like properties, including biocatalysis, glycolysis and gene expression. The protocells can be endogenously remodeled to acquire diverse proto-organelles including a spatially partitioned nucleus-like DNA/histone-based condensate to store genetic material, membrane-bounded water vacuoles to adjust cellular osmotic pressure, a three-dimensional network of F-actin proto-cytoskeleton to support structural stability and proto-mitochondria to generate endogenous ATP as source of energy. The protocells ultimately develop a nonspherical morphology due to the continuous biogeneration of metabolic products by implanted living bacteria cells. This protocol provides a novel living material assembly strategy for the construction of functional protoliving microdevices and offers opportunities for potential applications in engineered synthetic biology and biomedicine. The protocol takes ~27 d to complete and requires expertise in microbiology, phase separation, biochemistry and molecular biology related techniques.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of complex bacteriogenic protocells from living material assembly.\",\"authors\":\"Can Xu, Mei Li, Nicolas Martin, Stephen Mann\",\"doi\":\"10.1038/s41596-025-01148-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protocell research offers diverse opportunities to understand cellular processes and the foundations of life and holds attractive potential applications across various fields. However, it is still a formidable task to construct a true-to-life synthetic cell with high organizational and functional complexity. Here we present a protocol for constructing bacteriogenic protocells by employing prokaryotes as on-site repositories of compositional, functional and structural building blocks to address this challenge. This approach is based on the capture and processing of two spatially segregated bacterial colonies within individual coacervate microdroplets to produce membrane-bounded, molecularly crowded, compositionally, structurally and functionally complex synthetic cells. The bacteriogenic protocells inherit sufficient biological components from their bacterial building units to exhibit highly integrated life-like properties, including biocatalysis, glycolysis and gene expression. The protocells can be endogenously remodeled to acquire diverse proto-organelles including a spatially partitioned nucleus-like DNA/histone-based condensate to store genetic material, membrane-bounded water vacuoles to adjust cellular osmotic pressure, a three-dimensional network of F-actin proto-cytoskeleton to support structural stability and proto-mitochondria to generate endogenous ATP as source of energy. The protocells ultimately develop a nonspherical morphology due to the continuous biogeneration of metabolic products by implanted living bacteria cells. This protocol provides a novel living material assembly strategy for the construction of functional protoliving microdevices and offers opportunities for potential applications in engineered synthetic biology and biomedicine. The protocol takes ~27 d to complete and requires expertise in microbiology, phase separation, biochemistry and molecular biology related techniques.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01148-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01148-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

原始细胞研究为理解细胞过程和生命基础提供了多种机会,并在各个领域具有吸引人的潜在应用。然而,构建具有高度组织和功能复杂性的真实合成细胞仍然是一项艰巨的任务。在这里,我们提出了一种通过利用原核生物作为组成、功能和结构构建块的现场存储库来构建细菌原细胞的方案,以解决这一挑战。这种方法是基于捕获和处理两个空间分离的细菌菌落在单个凝聚微滴中,以产生膜结合,分子拥挤,组成,结构和功能复杂的合成细胞。细菌原细胞从其细菌构建单元继承了足够的生物成分,以表现出高度集成的类生命特性,包括生物催化、糖酵解和基因表达。原始细胞可以通过内源性重构获得多种原始细胞器,包括存储遗传物质的空间分裂的核样DNA/组蛋白凝聚物,调节细胞渗透压的膜结合水液泡,支持结构稳定性的f -肌动蛋白原始细胞骨架的三维网络以及产生内源性ATP作为能量来源的原始线粒体。由于植入的活细菌细胞不断产生代谢产物,原始细胞最终形成非球形形态。该方案为构建功能蛋白质微器件提供了一种新的生物材料组装策略,并为工程合成生物学和生物医学的潜在应用提供了机会。该方案需要约27天完成,需要微生物学,相分离,生物化学和分子生物学相关技术的专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of complex bacteriogenic protocells from living material assembly.

Protocell research offers diverse opportunities to understand cellular processes and the foundations of life and holds attractive potential applications across various fields. However, it is still a formidable task to construct a true-to-life synthetic cell with high organizational and functional complexity. Here we present a protocol for constructing bacteriogenic protocells by employing prokaryotes as on-site repositories of compositional, functional and structural building blocks to address this challenge. This approach is based on the capture and processing of two spatially segregated bacterial colonies within individual coacervate microdroplets to produce membrane-bounded, molecularly crowded, compositionally, structurally and functionally complex synthetic cells. The bacteriogenic protocells inherit sufficient biological components from their bacterial building units to exhibit highly integrated life-like properties, including biocatalysis, glycolysis and gene expression. The protocells can be endogenously remodeled to acquire diverse proto-organelles including a spatially partitioned nucleus-like DNA/histone-based condensate to store genetic material, membrane-bounded water vacuoles to adjust cellular osmotic pressure, a three-dimensional network of F-actin proto-cytoskeleton to support structural stability and proto-mitochondria to generate endogenous ATP as source of energy. The protocells ultimately develop a nonspherical morphology due to the continuous biogeneration of metabolic products by implanted living bacteria cells. This protocol provides a novel living material assembly strategy for the construction of functional protoliving microdevices and offers opportunities for potential applications in engineered synthetic biology and biomedicine. The protocol takes ~27 d to complete and requires expertise in microbiology, phase separation, biochemistry and molecular biology related techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信