{"title":"响应性纳米粒子与姜黄素协同作用,打破了 \"活性氧-神经炎症 \"的恶性循环,提高了创伤性脑损伤的治疗效果。","authors":"Xianhua Fu, Yongkang Zhang, Guojie Chen, Guangyao Mao, Jiajia Tang, Jin Xu, Yuhan Han, Honglin Chen, Lianshu Ding","doi":"10.1186/s12951-025-03251-y","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious \"ROS-neuroinflammation\" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)<sub>120</sub> scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the \"ROS-neuroinflammation\" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"172"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Responsive nanoparticles synergize with Curcumin to break the \\\"reactive oxygen Species-Neuroinflammation\\\" vicious cycle, enhancing traumatic brain injury outcomes.\",\"authors\":\"Xianhua Fu, Yongkang Zhang, Guojie Chen, Guangyao Mao, Jiajia Tang, Jin Xu, Yuhan Han, Honglin Chen, Lianshu Ding\",\"doi\":\"10.1186/s12951-025-03251-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious \\\"ROS-neuroinflammation\\\" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)<sub>120</sub> scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the \\\"ROS-neuroinflammation\\\" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"172\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03251-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03251-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Responsive nanoparticles synergize with Curcumin to break the "reactive oxygen Species-Neuroinflammation" vicious cycle, enhancing traumatic brain injury outcomes.
Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious "ROS-neuroinflammation" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)120 scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the "ROS-neuroinflammation" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.