Gen Li, He Sun, Yangqin Ye, Liqiong Chen, Wenyan Zhang, Shanshan Yu, Qiang Li, Lieying Fan
{"title":"利用支气管肺泡灌洗液进行纳米孔靶向测序诊断和治疗肺部感染性疾病的临床实用性。","authors":"Gen Li, He Sun, Yangqin Ye, Liqiong Chen, Wenyan Zhang, Shanshan Yu, Qiang Li, Lieying Fan","doi":"10.3389/fcimb.2025.1469440","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Conventional microbial testing (CMTs) for infectious pathogens faces challenges in rapid and comprehensive detection. Nanopore-targeted sequencing (NTS) is a novel approach for rapid identification of pathogens; however, clinical experience with the application of NTS is limited.</p><p><strong>Methods: </strong>We evaluated the diagnostic value of NTS for detecting microbes in bronchoalveolar lavage fluid samples in patients with pulmonary infectious disease (PID, 137 cases), non-pulmonary infectious disease (NPID, 32 cases), or with an unknown etiology (11 cases). We performed a comparative analysis of the diagnostic efficacy of NTS and CMTs in identifying pulmonary infectious diseases and investigated the clinical utility of NTS as a diagnostic tool.</p><p><strong>Results: </strong>NTS was significantly more sensitive than CMTs in detecting PID (86.13% vs 67.15%, P < 0.01), particularly for important specific pathogens. There were no significant differences between NTS and CMTs in terms of specificity, positive predictive value or negative predictive value. Moreover, NTS (not CMTs) detected 56 microorganisms consistent with clinical presentation, indicating that NTS can provide clinicians with additional support for infection diagnosis. Additionally, prior antibiotic exposure had no influence on the detection efficiency of NTS but significantly hindered that of CMTs. After antibiotic adjustments based on NTS findings, 87.76% of patients showed significant improvement, with a notable decrease in the level of inflammatory markers (CRP, NP, PCT, WBC) post-treatment. Furthermore, NTS can significantly shorten turnaround time and provide real-time results for rapid decision making.</p><p><strong>Conclusions: </strong>NTS is more efficient than CMTs in diagnosing pulmonary infectious diseases, particularly in detecting critical or specific pathogens, providing faster and more accurate clinical information even for patients with prior antibiotic exposure. Moreover, NTS can assist clinicians in formulating more effective anti-infection strategies.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1469440"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical utility of nanopore-targeted sequencing for diagnosing and treating pulmonary infectious diseases from bronchoalveolar lavage fluid.\",\"authors\":\"Gen Li, He Sun, Yangqin Ye, Liqiong Chen, Wenyan Zhang, Shanshan Yu, Qiang Li, Lieying Fan\",\"doi\":\"10.3389/fcimb.2025.1469440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Conventional microbial testing (CMTs) for infectious pathogens faces challenges in rapid and comprehensive detection. Nanopore-targeted sequencing (NTS) is a novel approach for rapid identification of pathogens; however, clinical experience with the application of NTS is limited.</p><p><strong>Methods: </strong>We evaluated the diagnostic value of NTS for detecting microbes in bronchoalveolar lavage fluid samples in patients with pulmonary infectious disease (PID, 137 cases), non-pulmonary infectious disease (NPID, 32 cases), or with an unknown etiology (11 cases). We performed a comparative analysis of the diagnostic efficacy of NTS and CMTs in identifying pulmonary infectious diseases and investigated the clinical utility of NTS as a diagnostic tool.</p><p><strong>Results: </strong>NTS was significantly more sensitive than CMTs in detecting PID (86.13% vs 67.15%, P < 0.01), particularly for important specific pathogens. There were no significant differences between NTS and CMTs in terms of specificity, positive predictive value or negative predictive value. Moreover, NTS (not CMTs) detected 56 microorganisms consistent with clinical presentation, indicating that NTS can provide clinicians with additional support for infection diagnosis. Additionally, prior antibiotic exposure had no influence on the detection efficiency of NTS but significantly hindered that of CMTs. After antibiotic adjustments based on NTS findings, 87.76% of patients showed significant improvement, with a notable decrease in the level of inflammatory markers (CRP, NP, PCT, WBC) post-treatment. Furthermore, NTS can significantly shorten turnaround time and provide real-time results for rapid decision making.</p><p><strong>Conclusions: </strong>NTS is more efficient than CMTs in diagnosing pulmonary infectious diseases, particularly in detecting critical or specific pathogens, providing faster and more accurate clinical information even for patients with prior antibiotic exposure. Moreover, NTS can assist clinicians in formulating more effective anti-infection strategies.</p>\",\"PeriodicalId\":12458,\"journal\":{\"name\":\"Frontiers in Cellular and Infection Microbiology\",\"volume\":\"15 \",\"pages\":\"1469440\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cellular and Infection Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fcimb.2025.1469440\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1469440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Clinical utility of nanopore-targeted sequencing for diagnosing and treating pulmonary infectious diseases from bronchoalveolar lavage fluid.
Background: Conventional microbial testing (CMTs) for infectious pathogens faces challenges in rapid and comprehensive detection. Nanopore-targeted sequencing (NTS) is a novel approach for rapid identification of pathogens; however, clinical experience with the application of NTS is limited.
Methods: We evaluated the diagnostic value of NTS for detecting microbes in bronchoalveolar lavage fluid samples in patients with pulmonary infectious disease (PID, 137 cases), non-pulmonary infectious disease (NPID, 32 cases), or with an unknown etiology (11 cases). We performed a comparative analysis of the diagnostic efficacy of NTS and CMTs in identifying pulmonary infectious diseases and investigated the clinical utility of NTS as a diagnostic tool.
Results: NTS was significantly more sensitive than CMTs in detecting PID (86.13% vs 67.15%, P < 0.01), particularly for important specific pathogens. There were no significant differences between NTS and CMTs in terms of specificity, positive predictive value or negative predictive value. Moreover, NTS (not CMTs) detected 56 microorganisms consistent with clinical presentation, indicating that NTS can provide clinicians with additional support for infection diagnosis. Additionally, prior antibiotic exposure had no influence on the detection efficiency of NTS but significantly hindered that of CMTs. After antibiotic adjustments based on NTS findings, 87.76% of patients showed significant improvement, with a notable decrease in the level of inflammatory markers (CRP, NP, PCT, WBC) post-treatment. Furthermore, NTS can significantly shorten turnaround time and provide real-time results for rapid decision making.
Conclusions: NTS is more efficient than CMTs in diagnosing pulmonary infectious diseases, particularly in detecting critical or specific pathogens, providing faster and more accurate clinical information even for patients with prior antibiotic exposure. Moreover, NTS can assist clinicians in formulating more effective anti-infection strategies.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.