FABP3通过调节晶状体上皮细胞铁下垂促进细胞凋亡和氧化应激。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-03-01 Epub Date: 2025-03-13 DOI:10.1080/10715762.2025.2475390
Qi Wang, Chunxiao Zhang, Bin Yu, Yanyan Zhang, Yuanyuan Guo
{"title":"FABP3通过调节晶状体上皮细胞铁下垂促进细胞凋亡和氧化应激。","authors":"Qi Wang, Chunxiao Zhang, Bin Yu, Yanyan Zhang, Yuanyuan Guo","doi":"10.1080/10715762.2025.2475390","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to investigate FABP3's biological function and potential mechanism in cataract. Treatment of H<sub>2</sub>O<sub>2</sub> raised FABP3 expression. H<sub>2</sub>O<sub>2</sub> decreased cell viability, enhanced apoptosis, promoted Bax and cleaved caspase-3 expression, inhibited Bcl-2 expression, enhanced the levels of IL-6, IL-1β, and TNF-α, raised MDA level, and decreased SOD and GSH levels in HLE-B3 cells. However, the effects of H<sub>2</sub>O<sub>2</sub> on cell viability, apoptosis, inflammatory cytokines, and oxidative stress were reversed by FABP3 knockdown and aggravated by FABP3 overexpression. H<sub>2</sub>O<sub>2</sub> increased the levels of lipid hydroperoxides and Fe<sup>2+</sup>, but reduced the expression of GPX4, SLC7A11, and Ferritin protein. Nevertheless, knockdown of FABP3 reversed the changes of lipid hydroperoxides, Fe<sup>2+</sup>, GPX4, SLC7A11, and Ferritin protein, and FABP3 overexpression caused the opposite results. In addition, the inhibition of FABP3 knockdown on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inducer (erastin), and the promotion of FABP3 overexpression on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inhibitor (Fer-1). Taken together, knockdown of FABP3 in lens epithelial cells treated with H<sub>2</sub>O<sub>2</sub> restrained apoptosis, inflammation, and oxidative stress through regulating ferroptosis, suggesting that FABP3 might be a potential target for cataract treatment.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"250-261"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FABP3 promotes cell apoptosis and oxidative stress by regulating ferroptosis in lens epithelial cells.\",\"authors\":\"Qi Wang, Chunxiao Zhang, Bin Yu, Yanyan Zhang, Yuanyuan Guo\",\"doi\":\"10.1080/10715762.2025.2475390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study is to investigate FABP3's biological function and potential mechanism in cataract. Treatment of H<sub>2</sub>O<sub>2</sub> raised FABP3 expression. H<sub>2</sub>O<sub>2</sub> decreased cell viability, enhanced apoptosis, promoted Bax and cleaved caspase-3 expression, inhibited Bcl-2 expression, enhanced the levels of IL-6, IL-1β, and TNF-α, raised MDA level, and decreased SOD and GSH levels in HLE-B3 cells. However, the effects of H<sub>2</sub>O<sub>2</sub> on cell viability, apoptosis, inflammatory cytokines, and oxidative stress were reversed by FABP3 knockdown and aggravated by FABP3 overexpression. H<sub>2</sub>O<sub>2</sub> increased the levels of lipid hydroperoxides and Fe<sup>2+</sup>, but reduced the expression of GPX4, SLC7A11, and Ferritin protein. Nevertheless, knockdown of FABP3 reversed the changes of lipid hydroperoxides, Fe<sup>2+</sup>, GPX4, SLC7A11, and Ferritin protein, and FABP3 overexpression caused the opposite results. In addition, the inhibition of FABP3 knockdown on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inducer (erastin), and the promotion of FABP3 overexpression on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inhibitor (Fer-1). Taken together, knockdown of FABP3 in lens epithelial cells treated with H<sub>2</sub>O<sub>2</sub> restrained apoptosis, inflammation, and oxidative stress through regulating ferroptosis, suggesting that FABP3 might be a potential target for cataract treatment.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"250-261\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2475390\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2475390","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨FABP3在白内障中的生物学功能及其潜在机制。H2O2处理使FABP3表达升高。H2O2降低HLE-B3细胞活力,促进细胞凋亡,促进Bax和裂解caspase-3表达,抑制Bcl-2表达,提高IL-6、IL-1β和TNF-α水平,升高MDA水平,降低SOD和GSH水平。然而,H2O2对细胞活力、细胞凋亡、炎症因子和氧化应激的影响可通过FABP3的下调而逆转,并通过FABP3的过表达而加剧。H2O2增加了脂质氢过氧化物和Fe2+的水平,但降低了GPX4、SLC7A11和铁蛋白的表达。然而,FABP3的下调逆转了脂质氢过氧化物、Fe2+、GPX4、SLC7A11和铁蛋白的变化,而FABP3的过表达则导致相反的结果。此外,FABP3基因敲低对细胞凋亡、炎症和氧化应激的抑制作用被铁下垂诱导剂(erastin)逆转,FABP3基因过表达对细胞凋亡、炎症和氧化应激的促进作用被铁下垂抑制剂(Fer-1)逆转。综上所述,在H2O2处理的晶状体上皮细胞中,FABP3的下调通过调节铁下垂抑制细胞凋亡、炎症和氧化应激,提示FABP3可能是白内障治疗的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FABP3 promotes cell apoptosis and oxidative stress by regulating ferroptosis in lens epithelial cells.

The purpose of this study is to investigate FABP3's biological function and potential mechanism in cataract. Treatment of H2O2 raised FABP3 expression. H2O2 decreased cell viability, enhanced apoptosis, promoted Bax and cleaved caspase-3 expression, inhibited Bcl-2 expression, enhanced the levels of IL-6, IL-1β, and TNF-α, raised MDA level, and decreased SOD and GSH levels in HLE-B3 cells. However, the effects of H2O2 on cell viability, apoptosis, inflammatory cytokines, and oxidative stress were reversed by FABP3 knockdown and aggravated by FABP3 overexpression. H2O2 increased the levels of lipid hydroperoxides and Fe2+, but reduced the expression of GPX4, SLC7A11, and Ferritin protein. Nevertheless, knockdown of FABP3 reversed the changes of lipid hydroperoxides, Fe2+, GPX4, SLC7A11, and Ferritin protein, and FABP3 overexpression caused the opposite results. In addition, the inhibition of FABP3 knockdown on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inducer (erastin), and the promotion of FABP3 overexpression on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inhibitor (Fer-1). Taken together, knockdown of FABP3 in lens epithelial cells treated with H2O2 restrained apoptosis, inflammation, and oxidative stress through regulating ferroptosis, suggesting that FABP3 might be a potential target for cataract treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信