Qi Wang, Chunxiao Zhang, Bin Yu, Yanyan Zhang, Yuanyuan Guo
{"title":"FABP3通过调节晶状体上皮细胞铁下垂促进细胞凋亡和氧化应激。","authors":"Qi Wang, Chunxiao Zhang, Bin Yu, Yanyan Zhang, Yuanyuan Guo","doi":"10.1080/10715762.2025.2475390","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to investigate FABP3's biological function and potential mechanism in cataract. Treatment of H<sub>2</sub>O<sub>2</sub> raised FABP3 expression. H<sub>2</sub>O<sub>2</sub> decreased cell viability, enhanced apoptosis, promoted Bax and cleaved caspase-3 expression, inhibited Bcl-2 expression, enhanced the levels of IL-6, IL-1β, and TNF-α, raised MDA level, and decreased SOD and GSH levels in HLE-B3 cells. However, the effects of H<sub>2</sub>O<sub>2</sub> on cell viability, apoptosis, inflammatory cytokines, and oxidative stress were reversed by FABP3 knockdown and aggravated by FABP3 overexpression. H<sub>2</sub>O<sub>2</sub> increased the levels of lipid hydroperoxides and Fe<sup>2+</sup>, but reduced the expression of GPX4, SLC7A11, and Ferritin protein. Nevertheless, knockdown of FABP3 reversed the changes of lipid hydroperoxides, Fe<sup>2+</sup>, GPX4, SLC7A11, and Ferritin protein, and FABP3 overexpression caused the opposite results. In addition, the inhibition of FABP3 knockdown on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inducer (erastin), and the promotion of FABP3 overexpression on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inhibitor (Fer-1). Taken together, knockdown of FABP3 in lens epithelial cells treated with H<sub>2</sub>O<sub>2</sub> restrained apoptosis, inflammation, and oxidative stress through regulating ferroptosis, suggesting that FABP3 might be a potential target for cataract treatment.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"250-261"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FABP3 promotes cell apoptosis and oxidative stress by regulating ferroptosis in lens epithelial cells.\",\"authors\":\"Qi Wang, Chunxiao Zhang, Bin Yu, Yanyan Zhang, Yuanyuan Guo\",\"doi\":\"10.1080/10715762.2025.2475390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study is to investigate FABP3's biological function and potential mechanism in cataract. Treatment of H<sub>2</sub>O<sub>2</sub> raised FABP3 expression. H<sub>2</sub>O<sub>2</sub> decreased cell viability, enhanced apoptosis, promoted Bax and cleaved caspase-3 expression, inhibited Bcl-2 expression, enhanced the levels of IL-6, IL-1β, and TNF-α, raised MDA level, and decreased SOD and GSH levels in HLE-B3 cells. However, the effects of H<sub>2</sub>O<sub>2</sub> on cell viability, apoptosis, inflammatory cytokines, and oxidative stress were reversed by FABP3 knockdown and aggravated by FABP3 overexpression. H<sub>2</sub>O<sub>2</sub> increased the levels of lipid hydroperoxides and Fe<sup>2+</sup>, but reduced the expression of GPX4, SLC7A11, and Ferritin protein. Nevertheless, knockdown of FABP3 reversed the changes of lipid hydroperoxides, Fe<sup>2+</sup>, GPX4, SLC7A11, and Ferritin protein, and FABP3 overexpression caused the opposite results. In addition, the inhibition of FABP3 knockdown on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inducer (erastin), and the promotion of FABP3 overexpression on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inhibitor (Fer-1). Taken together, knockdown of FABP3 in lens epithelial cells treated with H<sub>2</sub>O<sub>2</sub> restrained apoptosis, inflammation, and oxidative stress through regulating ferroptosis, suggesting that FABP3 might be a potential target for cataract treatment.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"250-261\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2475390\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2475390","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
FABP3 promotes cell apoptosis and oxidative stress by regulating ferroptosis in lens epithelial cells.
The purpose of this study is to investigate FABP3's biological function and potential mechanism in cataract. Treatment of H2O2 raised FABP3 expression. H2O2 decreased cell viability, enhanced apoptosis, promoted Bax and cleaved caspase-3 expression, inhibited Bcl-2 expression, enhanced the levels of IL-6, IL-1β, and TNF-α, raised MDA level, and decreased SOD and GSH levels in HLE-B3 cells. However, the effects of H2O2 on cell viability, apoptosis, inflammatory cytokines, and oxidative stress were reversed by FABP3 knockdown and aggravated by FABP3 overexpression. H2O2 increased the levels of lipid hydroperoxides and Fe2+, but reduced the expression of GPX4, SLC7A11, and Ferritin protein. Nevertheless, knockdown of FABP3 reversed the changes of lipid hydroperoxides, Fe2+, GPX4, SLC7A11, and Ferritin protein, and FABP3 overexpression caused the opposite results. In addition, the inhibition of FABP3 knockdown on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inducer (erastin), and the promotion of FABP3 overexpression on cell apoptosis, inflammation, and oxidative stress was reversed by ferroptosis inhibitor (Fer-1). Taken together, knockdown of FABP3 in lens epithelial cells treated with H2O2 restrained apoptosis, inflammation, and oxidative stress through regulating ferroptosis, suggesting that FABP3 might be a potential target for cataract treatment.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.