设计苯丙氨酸羟化酶,结合有效的辅助因子合成和再生系统,用于高产5-羟色氨酸的生产。

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yulin Ai, Yusong Huang, Hongru Zhao, Bingmei Su, Juan Lin
{"title":"设计苯丙氨酸羟化酶,结合有效的辅助因子合成和再生系统,用于高产5-羟色氨酸的生产。","authors":"Yulin Ai, Yusong Huang, Hongru Zhao, Bingmei Su, Juan Lin","doi":"10.1186/s40643-025-00846-z","DOIUrl":null,"url":null,"abstract":"<p><p>5-Hydroxytryptophan (5-HTP) is widely used as a natural remedy for sleep disorders. In terms of biosafety, bio-derived 5-HTP is preferred over chemically synthesized 5-HTP. However, the low titer of 5-HTP in the reported microbiological methods (< 10 g/L) limits the industrialization of 5-HTP biosynthesis. In the present study, a Trp-accumulating E. coli strain TRP1 was constructed by blocking the degradation path (ΔtnaA), branching paths (ΔpheA, ΔtyrA) and repression system (ΔtrpR, ΔtrpL). Next, the hydroxylation module employing a phenylalanine hydroxylase mutant XcPAH<sup>W179F</sup> (XC2) coupled with an MH4 regenerating system (CvPCD-EcFolM system) was screened to convert L-Trp into 5-HTP. Protein engineering was performed on hydroxylase XC2 based on the molecular dynamics simulation of the enzyme-substrate complex, and the strain TRP1-XC4 harboring the triple-mutant XcPAH<sup>L98I/A129K/W179F</sup> (XC4) was able to produce 319.4 mg/L 5-HTP. Genome editing was carried out focused on accelerating product efflux (strengthening YddG) and increasing MH4 supply (strengthening FolM, FolE and FolX), resulting in a strain TRP5-XC4 to produce 13.9 g/L 5-HTP in 5 L fed-batch fermentation with a space-time yield of 0.29 g/L/h, which is the highest production and productivity record for 5-HTP biosynthesis. This study successfully provided an engineered strain and an efficient green method for the industrial synthesis of 5-HTP.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"15"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineered phenylalanine hydroxylase coupled with an effective cofactor synthesis and regeneration system for high-yield production of 5-hydroxytryptophan.\",\"authors\":\"Yulin Ai, Yusong Huang, Hongru Zhao, Bingmei Su, Juan Lin\",\"doi\":\"10.1186/s40643-025-00846-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>5-Hydroxytryptophan (5-HTP) is widely used as a natural remedy for sleep disorders. In terms of biosafety, bio-derived 5-HTP is preferred over chemically synthesized 5-HTP. However, the low titer of 5-HTP in the reported microbiological methods (< 10 g/L) limits the industrialization of 5-HTP biosynthesis. In the present study, a Trp-accumulating E. coli strain TRP1 was constructed by blocking the degradation path (ΔtnaA), branching paths (ΔpheA, ΔtyrA) and repression system (ΔtrpR, ΔtrpL). Next, the hydroxylation module employing a phenylalanine hydroxylase mutant XcPAH<sup>W179F</sup> (XC2) coupled with an MH4 regenerating system (CvPCD-EcFolM system) was screened to convert L-Trp into 5-HTP. Protein engineering was performed on hydroxylase XC2 based on the molecular dynamics simulation of the enzyme-substrate complex, and the strain TRP1-XC4 harboring the triple-mutant XcPAH<sup>L98I/A129K/W179F</sup> (XC4) was able to produce 319.4 mg/L 5-HTP. Genome editing was carried out focused on accelerating product efflux (strengthening YddG) and increasing MH4 supply (strengthening FolM, FolE and FolX), resulting in a strain TRP5-XC4 to produce 13.9 g/L 5-HTP in 5 L fed-batch fermentation with a space-time yield of 0.29 g/L/h, which is the highest production and productivity record for 5-HTP biosynthesis. This study successfully provided an engineered strain and an efficient green method for the industrial synthesis of 5-HTP.</p>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"12 1\",\"pages\":\"15\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-025-00846-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00846-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

5-羟色氨酸(5-HTP)被广泛用作治疗睡眠障碍的天然药物。在生物安全性方面,生物衍生的5-HTP优于化学合成的5-HTP。然而,在已报道的微生物学方法(W179F (XC2)结合MH4再生系统(CvPCD-EcFolM系统)中,筛选了低滴度的5-HTP将L-Trp转化为5-HTP。基于酶-底物复合物的分子动力学模拟,对羟化酶XC2进行蛋白工程,结果发现携带三突变体XcPAHL98I/A129K/W179F (XC4)的菌株TRP1-XC4能够产生319.4 mg/L的5-羟化酶。基因组编辑的重点是加速产物外排(加强YddG)和增加MH4供应(加强FolM、FolE和FolX),使菌株TRP5-XC4在5 L补料分批发酵中产生13.9 g/L 5- htp,时空产量为0.29 g/L/h,这是5- htp生物合成的最高产量和生产力记录。本研究成功地为工业合成5-HTP提供了一种工程菌株和一种高效的绿色方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineered phenylalanine hydroxylase coupled with an effective cofactor synthesis and regeneration system for high-yield production of 5-hydroxytryptophan.

5-Hydroxytryptophan (5-HTP) is widely used as a natural remedy for sleep disorders. In terms of biosafety, bio-derived 5-HTP is preferred over chemically synthesized 5-HTP. However, the low titer of 5-HTP in the reported microbiological methods (< 10 g/L) limits the industrialization of 5-HTP biosynthesis. In the present study, a Trp-accumulating E. coli strain TRP1 was constructed by blocking the degradation path (ΔtnaA), branching paths (ΔpheA, ΔtyrA) and repression system (ΔtrpR, ΔtrpL). Next, the hydroxylation module employing a phenylalanine hydroxylase mutant XcPAHW179F (XC2) coupled with an MH4 regenerating system (CvPCD-EcFolM system) was screened to convert L-Trp into 5-HTP. Protein engineering was performed on hydroxylase XC2 based on the molecular dynamics simulation of the enzyme-substrate complex, and the strain TRP1-XC4 harboring the triple-mutant XcPAHL98I/A129K/W179F (XC4) was able to produce 319.4 mg/L 5-HTP. Genome editing was carried out focused on accelerating product efflux (strengthening YddG) and increasing MH4 supply (strengthening FolM, FolE and FolX), resulting in a strain TRP5-XC4 to produce 13.9 g/L 5-HTP in 5 L fed-batch fermentation with a space-time yield of 0.29 g/L/h, which is the highest production and productivity record for 5-HTP biosynthesis. This study successfully provided an engineered strain and an efficient green method for the industrial synthesis of 5-HTP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信