{"title":"知识引导的图学习方法桥接表型和基于靶标的药物发现。","authors":"Qing Ye, Yundian Zeng, Linlong Jiang, Yu Kang, Peichen Pan, Jiming Chen, Yafeng Deng, Haitao Zhao, Shibo He, Tingjun Hou, Chang-Yu Hsieh","doi":"10.1002/advs.202412402","DOIUrl":null,"url":null,"abstract":"<p>Discovering therapeutic molecules requires the integration of both phenotype-based drug discovery (PDD) and target-based drug discovery (TDD). However, this integration remains challenging due to the inherent heterogeneity, noise, and bias present in biomedical data. In this study, Knowledge-Guided Drug Relational Predictor (KGDRP), a graph representation learning approach is developed that effectively integrates multimodal biomedical data, including network data containing biological system information, gene expression data, and sequence data that incorporates chemical molecular structures, all within a heterogeneous graph (HG) structure. By incorporating biomedical HG (BioHG) into a heterogeneous graph neural network (HGNN)-based architecture, KGDRP exhibits a remarkable 12% improvement compared to previous methods in real-world screening scenarios. Notably, the biology-informed representation, derived from KGDRP, significantly enhance target prioritization by 26% in drug target discovery. Furthermore, zero-shot evaluation on COVID-19 exhibited a notably higher success rate in identifying diverse potential drugs. The utilization of BioHG facilitates a unique KGDRP-based analysis of cell-target-drug interactions, thereby enabling the elucidation of drug mechanisms. Overall, KGDRP provides a robust infrastructure for the seamlessly integration of multimodal data and biomedical networks, effectively accelerating PDD, guiding therapeutic target discovery, and ultimately expediting therapeutic molecule discovery.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 16","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202412402","citationCount":"0","resultStr":"{\"title\":\"A Knowledge-Guided Graph Learning Approach Bridging Phenotype- and Target-Based Drug Discovery\",\"authors\":\"Qing Ye, Yundian Zeng, Linlong Jiang, Yu Kang, Peichen Pan, Jiming Chen, Yafeng Deng, Haitao Zhao, Shibo He, Tingjun Hou, Chang-Yu Hsieh\",\"doi\":\"10.1002/advs.202412402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Discovering therapeutic molecules requires the integration of both phenotype-based drug discovery (PDD) and target-based drug discovery (TDD). However, this integration remains challenging due to the inherent heterogeneity, noise, and bias present in biomedical data. In this study, Knowledge-Guided Drug Relational Predictor (KGDRP), a graph representation learning approach is developed that effectively integrates multimodal biomedical data, including network data containing biological system information, gene expression data, and sequence data that incorporates chemical molecular structures, all within a heterogeneous graph (HG) structure. By incorporating biomedical HG (BioHG) into a heterogeneous graph neural network (HGNN)-based architecture, KGDRP exhibits a remarkable 12% improvement compared to previous methods in real-world screening scenarios. Notably, the biology-informed representation, derived from KGDRP, significantly enhance target prioritization by 26% in drug target discovery. Furthermore, zero-shot evaluation on COVID-19 exhibited a notably higher success rate in identifying diverse potential drugs. The utilization of BioHG facilitates a unique KGDRP-based analysis of cell-target-drug interactions, thereby enabling the elucidation of drug mechanisms. Overall, KGDRP provides a robust infrastructure for the seamlessly integration of multimodal data and biomedical networks, effectively accelerating PDD, guiding therapeutic target discovery, and ultimately expediting therapeutic molecule discovery.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202412402\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202412402\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202412402","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Knowledge-Guided Graph Learning Approach Bridging Phenotype- and Target-Based Drug Discovery
Discovering therapeutic molecules requires the integration of both phenotype-based drug discovery (PDD) and target-based drug discovery (TDD). However, this integration remains challenging due to the inherent heterogeneity, noise, and bias present in biomedical data. In this study, Knowledge-Guided Drug Relational Predictor (KGDRP), a graph representation learning approach is developed that effectively integrates multimodal biomedical data, including network data containing biological system information, gene expression data, and sequence data that incorporates chemical molecular structures, all within a heterogeneous graph (HG) structure. By incorporating biomedical HG (BioHG) into a heterogeneous graph neural network (HGNN)-based architecture, KGDRP exhibits a remarkable 12% improvement compared to previous methods in real-world screening scenarios. Notably, the biology-informed representation, derived from KGDRP, significantly enhance target prioritization by 26% in drug target discovery. Furthermore, zero-shot evaluation on COVID-19 exhibited a notably higher success rate in identifying diverse potential drugs. The utilization of BioHG facilitates a unique KGDRP-based analysis of cell-target-drug interactions, thereby enabling the elucidation of drug mechanisms. Overall, KGDRP provides a robust infrastructure for the seamlessly integration of multimodal data and biomedical networks, effectively accelerating PDD, guiding therapeutic target discovery, and ultimately expediting therapeutic molecule discovery.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.