0.69 ga0.31 as热光伏电池0.6 eV带隙的制备及其系统论证

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Qiaobing Yang, Han Zhai, Hongbo Lu, Tong Zheng, Ge Li, Renbo Lei, Shuai Jiang, Ninghua Ma, Wei Zhang, Xinyi Li
{"title":"0.69 ga0.31 as热光伏电池0.6 eV带隙的制备及其系统论证","authors":"Qiaobing Yang,&nbsp;Han Zhai,&nbsp;Hongbo Lu,&nbsp;Tong Zheng,&nbsp;Ge Li,&nbsp;Renbo Lei,&nbsp;Shuai Jiang,&nbsp;Ninghua Ma,&nbsp;Wei Zhang,&nbsp;Xinyi Li","doi":"10.1002/ente.202401480","DOIUrl":null,"url":null,"abstract":"<p>Thermophotovoltaic (TPV) is a promising energy conversion technology that can absorb the heat from a thermal radiator and transfer it into power. As the most significant energy converter, TPV cells need a narrower bandgap to realize a wider absorption spectrum range. In this work, the fabrication and characterization of single-junction In<sub>0.69</sub>Ga<sub>0.31</sub>As TPV cells with a bandgap of 0.6 eV are presented. The main structure is grown on an InP substrate through metal-organic chemical vapor deposition. Step-graded InAs<sub><i>y</i></sub>P<sub>1−<i>y</i></sub> buffer layers are used to mitigate the dislocations by relaxing the stress induced by lattice mismatch completely. Analysis of the composition, strain relaxation, layer tilt, and crystalline quality of each layer is demonstrated using triple-axis X-ray reciprocal space mapping and transmission electron microscopy. According to the tested results, each layer is found to be nearly fully relaxed and the InGaAs active layer grown on the buffer displays a high crystal quality. External quantum efficiency achieves 90% at 1100–1500 nm. Additionally, a TPV test platform is constructed to evaluate the cell performance. The maximum efficiency of the lattice-mismatched TPV cell reaches 21.92% operating at a power density of 267.4 mW cm<sup>−2</sup> and an emitter temperature of 1200 °C.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of 0.6 eV Bandgap In0.69Ga0.31As Thermophotovoltaic Cells and Its System Demonstration\",\"authors\":\"Qiaobing Yang,&nbsp;Han Zhai,&nbsp;Hongbo Lu,&nbsp;Tong Zheng,&nbsp;Ge Li,&nbsp;Renbo Lei,&nbsp;Shuai Jiang,&nbsp;Ninghua Ma,&nbsp;Wei Zhang,&nbsp;Xinyi Li\",\"doi\":\"10.1002/ente.202401480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermophotovoltaic (TPV) is a promising energy conversion technology that can absorb the heat from a thermal radiator and transfer it into power. As the most significant energy converter, TPV cells need a narrower bandgap to realize a wider absorption spectrum range. In this work, the fabrication and characterization of single-junction In<sub>0.69</sub>Ga<sub>0.31</sub>As TPV cells with a bandgap of 0.6 eV are presented. The main structure is grown on an InP substrate through metal-organic chemical vapor deposition. Step-graded InAs<sub><i>y</i></sub>P<sub>1−<i>y</i></sub> buffer layers are used to mitigate the dislocations by relaxing the stress induced by lattice mismatch completely. Analysis of the composition, strain relaxation, layer tilt, and crystalline quality of each layer is demonstrated using triple-axis X-ray reciprocal space mapping and transmission electron microscopy. According to the tested results, each layer is found to be nearly fully relaxed and the InGaAs active layer grown on the buffer displays a high crystal quality. External quantum efficiency achieves 90% at 1100–1500 nm. Additionally, a TPV test platform is constructed to evaluate the cell performance. The maximum efficiency of the lattice-mismatched TPV cell reaches 21.92% operating at a power density of 267.4 mW cm<sup>−2</sup> and an emitter temperature of 1200 °C.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401480\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401480","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

热光伏(TPV)是一种很有前途的能量转换技术,它可以从散热器吸收热量并将其转化为电能。TPV电池作为最重要的能量转换器,需要更窄的带隙来实现更宽的吸收光谱范围。本文介绍了带隙为0.6 eV的单结In0.69Ga0.31As TPV电池的制备和性能。主要结构是通过金属有机化学气相沉积在InP衬底上生长的。阶梯式InAsyP1−y缓冲层通过完全放松晶格失配引起的应力来减轻位错。利用三轴x射线互反空间映射和透射电子显微镜对每层的成分、应变松弛、层倾斜和晶体质量进行了分析。根据测试结果,发现每层几乎完全松弛,并且在缓冲液上生长的InGaAs活性层显示出较高的晶体质量。在1100-1500 nm处,外量子效率达到90%。此外,还构建了TPV测试平台来评估电池的性能。在功率密度为267.4 mW cm−2和发射极温度为1200℃的条件下,晶格错配TPV电池的最大效率达到21.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of 0.6 eV Bandgap In0.69Ga0.31As Thermophotovoltaic Cells and Its System Demonstration

Fabrication of 0.6 eV Bandgap In0.69Ga0.31As Thermophotovoltaic Cells and Its System Demonstration

Thermophotovoltaic (TPV) is a promising energy conversion technology that can absorb the heat from a thermal radiator and transfer it into power. As the most significant energy converter, TPV cells need a narrower bandgap to realize a wider absorption spectrum range. In this work, the fabrication and characterization of single-junction In0.69Ga0.31As TPV cells with a bandgap of 0.6 eV are presented. The main structure is grown on an InP substrate through metal-organic chemical vapor deposition. Step-graded InAsyP1−y buffer layers are used to mitigate the dislocations by relaxing the stress induced by lattice mismatch completely. Analysis of the composition, strain relaxation, layer tilt, and crystalline quality of each layer is demonstrated using triple-axis X-ray reciprocal space mapping and transmission electron microscopy. According to the tested results, each layer is found to be nearly fully relaxed and the InGaAs active layer grown on the buffer displays a high crystal quality. External quantum efficiency achieves 90% at 1100–1500 nm. Additionally, a TPV test platform is constructed to evaluate the cell performance. The maximum efficiency of the lattice-mismatched TPV cell reaches 21.92% operating at a power density of 267.4 mW cm−2 and an emitter temperature of 1200 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信