Yuan Song, Danfei Huang, Tianyi Wang, Yi Xie, Dong Song, Jinghui Hong, Yushi Yang, Jiaxuan Yan
{"title":"基于对称单LCVR的肺癌偏振成像检测方法","authors":"Yuan Song, Danfei Huang, Tianyi Wang, Yi Xie, Dong Song, Jinghui Hong, Yushi Yang, Jiaxuan Yan","doi":"10.1002/jbio.202400470","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lung cancer ranks among the three most prevalent cancers worldwide. Polarization imaging technology can effectively distinguish between cancerous and normal tissues. The most commonly applied method for cancer detection is the dual-rotating wave plate polarization imaging system (DWRPIS), which is cumbersome and prone to significant error due to 60 mechanical rotations. To address this, our experiment leveraged the stability of the Liquid Crystal Variable Retarder (LCVR) and, based on existing theoretical foundations for simplifying the use of LCVRs, designed a symmetric single-LCVR polarization imaging system (SSLPIS) for the first time to detect lung cancer images. The SSLPIS is easy to operate, completing the entire acquisition process in just 150 s, with effective Mueller matrix imaging and an overall accuracy rate of over 90%, offering a faster and more precise detection method. This new approach provides an innovative pathway for the rapid detection of lung cancer.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization Imaging Method for Detection of Lung Cancer Based on Symmetrical Single LCVR\",\"authors\":\"Yuan Song, Danfei Huang, Tianyi Wang, Yi Xie, Dong Song, Jinghui Hong, Yushi Yang, Jiaxuan Yan\",\"doi\":\"10.1002/jbio.202400470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Lung cancer ranks among the three most prevalent cancers worldwide. Polarization imaging technology can effectively distinguish between cancerous and normal tissues. The most commonly applied method for cancer detection is the dual-rotating wave plate polarization imaging system (DWRPIS), which is cumbersome and prone to significant error due to 60 mechanical rotations. To address this, our experiment leveraged the stability of the Liquid Crystal Variable Retarder (LCVR) and, based on existing theoretical foundations for simplifying the use of LCVRs, designed a symmetric single-LCVR polarization imaging system (SSLPIS) for the first time to detect lung cancer images. The SSLPIS is easy to operate, completing the entire acquisition process in just 150 s, with effective Mueller matrix imaging and an overall accuracy rate of over 90%, offering a faster and more precise detection method. This new approach provides an innovative pathway for the rapid detection of lung cancer.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400470\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400470","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Polarization Imaging Method for Detection of Lung Cancer Based on Symmetrical Single LCVR
Lung cancer ranks among the three most prevalent cancers worldwide. Polarization imaging technology can effectively distinguish between cancerous and normal tissues. The most commonly applied method for cancer detection is the dual-rotating wave plate polarization imaging system (DWRPIS), which is cumbersome and prone to significant error due to 60 mechanical rotations. To address this, our experiment leveraged the stability of the Liquid Crystal Variable Retarder (LCVR) and, based on existing theoretical foundations for simplifying the use of LCVRs, designed a symmetric single-LCVR polarization imaging system (SSLPIS) for the first time to detect lung cancer images. The SSLPIS is easy to operate, completing the entire acquisition process in just 150 s, with effective Mueller matrix imaging and an overall accuracy rate of over 90%, offering a faster and more precise detection method. This new approach provides an innovative pathway for the rapid detection of lung cancer.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.