塔中油田西部岩溶油气藏特征及甜点预测

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Yingjin Wang, Siyu Chen, Jiangyong Wu, Yujing Qian, Xiaowei Hou
{"title":"塔中油田西部岩溶油气藏特征及甜点预测","authors":"Yingjin Wang,&nbsp;Siyu Chen,&nbsp;Jiangyong Wu,&nbsp;Yujing Qian,&nbsp;Xiaowei Hou","doi":"10.1155/er/4038164","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The Ordovician carbonates in the Tarim Basin’s central uplift zone are crucial for oil and gas exploration. A comprehensive analysis has been conducted utilizing 3D seismic imaging, logging, core samples, and production tests to explore its potential. The results indicate that dissolution within the Ordovician reservoir, attributed to an intricate fault system involving karstification and faulting, enhances hydrocarbon storage. Both structural and dissolution-induced fractures are vital for efficient hydrocarbon flow. NE-SW strike-slip faults significantly impact the distribution of carbonate reservoirs, particularly in early karst strata with higher porosity. Seismic sections reveal three distinct reflection patterns: full, single peak, and chaotic. The forward seismic model shows that oil/gas saturation influences seismic energy. High-yielding wells are located in formations with full-waveform patterns and high energy, indicating high porosity. A strong correlation exists between Class I seismic phases and high-porosity zones. Daily production in these zones ranges from 30 to 70 tons, validating the evaluation methods. The Yijianfang formation excels in oil storage due to its karst features and numerous unfilled tectonic and dissolution fractures, offering ample storage and permeability. High production is seen in strata with porosity &gt;4.5%, but fractures alone do not ensure high production. Structural activity, occurring mainly during the meso-deep burial stage, allows acidic solutions to permeate structural fractures, leading to further dissolution. Karstification is confined to depths within 80 m of the Yijianfang formation top, indicating significant exploration potential.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/4038164","citationCount":"0","resultStr":"{\"title\":\"Karst Hydrocarbon Reservoir Characterization and Sweet Spot Prediction in the Western Tazhong Oilfield, China\",\"authors\":\"Yingjin Wang,&nbsp;Siyu Chen,&nbsp;Jiangyong Wu,&nbsp;Yujing Qian,&nbsp;Xiaowei Hou\",\"doi\":\"10.1155/er/4038164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The Ordovician carbonates in the Tarim Basin’s central uplift zone are crucial for oil and gas exploration. A comprehensive analysis has been conducted utilizing 3D seismic imaging, logging, core samples, and production tests to explore its potential. The results indicate that dissolution within the Ordovician reservoir, attributed to an intricate fault system involving karstification and faulting, enhances hydrocarbon storage. Both structural and dissolution-induced fractures are vital for efficient hydrocarbon flow. NE-SW strike-slip faults significantly impact the distribution of carbonate reservoirs, particularly in early karst strata with higher porosity. Seismic sections reveal three distinct reflection patterns: full, single peak, and chaotic. The forward seismic model shows that oil/gas saturation influences seismic energy. High-yielding wells are located in formations with full-waveform patterns and high energy, indicating high porosity. A strong correlation exists between Class I seismic phases and high-porosity zones. Daily production in these zones ranges from 30 to 70 tons, validating the evaluation methods. The Yijianfang formation excels in oil storage due to its karst features and numerous unfilled tectonic and dissolution fractures, offering ample storage and permeability. High production is seen in strata with porosity &gt;4.5%, but fractures alone do not ensure high production. Structural activity, occurring mainly during the meso-deep burial stage, allows acidic solutions to permeate structural fractures, leading to further dissolution. Karstification is confined to depths within 80 m of the Yijianfang formation top, indicating significant exploration potential.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/4038164\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/4038164\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/4038164","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

塔里木盆地中央隆起带奥陶系碳酸盐岩是油气勘探的关键。利用三维地震成像、测井、岩心样品和生产测试进行了综合分析,以探索其潜力。研究结果表明,奥陶纪储层内部溶蚀作用增强了油气的储集能力,这是由岩溶作用和断裂作用共同作用的复杂断裂系统造成的。构造裂缝和溶蚀裂缝对于油气的高效流动都至关重要。NE-SW走滑断裂对碳酸盐岩储层的分布有显著影响,特别是在孔隙度较高的早期岩溶地层中。地震剖面显示三种不同的反射模式:全反射、单峰反射和混沌反射。正演地震模型表明,油气饱和度影响地震能量。高产井位于全波形、高能量的地层中,表明孔隙度高。一类地震相与高孔隙度带之间存在较强的相关性。这些区域的日产量从30吨到70吨不等,验证了评估方法。一间房组岩溶发育,构造裂缝和溶蚀裂缝多,储油能力强,渗透率高。在孔隙度为4.5%的地层中可以看到高产,但仅靠裂缝并不能保证高产。构造活动主要发生在中深埋藏阶段,使酸性溶液渗透到构造裂缝中,导致进一步溶解。岩溶作用局限在一间房组顶部80 m范围内,勘探潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Karst Hydrocarbon Reservoir Characterization and Sweet Spot Prediction in the Western Tazhong Oilfield, China

Karst Hydrocarbon Reservoir Characterization and Sweet Spot Prediction in the Western Tazhong Oilfield, China

The Ordovician carbonates in the Tarim Basin’s central uplift zone are crucial for oil and gas exploration. A comprehensive analysis has been conducted utilizing 3D seismic imaging, logging, core samples, and production tests to explore its potential. The results indicate that dissolution within the Ordovician reservoir, attributed to an intricate fault system involving karstification and faulting, enhances hydrocarbon storage. Both structural and dissolution-induced fractures are vital for efficient hydrocarbon flow. NE-SW strike-slip faults significantly impact the distribution of carbonate reservoirs, particularly in early karst strata with higher porosity. Seismic sections reveal three distinct reflection patterns: full, single peak, and chaotic. The forward seismic model shows that oil/gas saturation influences seismic energy. High-yielding wells are located in formations with full-waveform patterns and high energy, indicating high porosity. A strong correlation exists between Class I seismic phases and high-porosity zones. Daily production in these zones ranges from 30 to 70 tons, validating the evaluation methods. The Yijianfang formation excels in oil storage due to its karst features and numerous unfilled tectonic and dissolution fractures, offering ample storage and permeability. High production is seen in strata with porosity >4.5%, but fractures alone do not ensure high production. Structural activity, occurring mainly during the meso-deep burial stage, allows acidic solutions to permeate structural fractures, leading to further dissolution. Karstification is confined to depths within 80 m of the Yijianfang formation top, indicating significant exploration potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信