下载PDF
{"title":"2次Siegel尖形式的傅里叶系数界和全局上模","authors":"Félicien Comtat, Jolanta Marzec-Ballesteros, Abhishek Saha","doi":"10.1112/jlms.70119","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> be an <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-normalized Siegel cusp form for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Sp</mi>\n <mn>4</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\rm Sp}_4({\\mathbb {Z}})$</annotation>\n </semantics></math> of weight <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> that is a Hecke eigenform and not a Saito–Kurokawa lift. Assuming the generalized Riemann hypothesis, we prove that its Fourier coefficients satisfy the bound <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>a</mi>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>,</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n <msub>\n <mo>≪</mo>\n <mi>ε</mi>\n </msub>\n <mfrac>\n <mrow>\n <msup>\n <mi>k</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>4</mn>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>4</mn>\n <mi>π</mi>\n <mo>)</mo>\n </mrow>\n <mi>k</mi>\n </msup>\n </mrow>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mfrac>\n <mi>c</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n </msup>\n <mo>det</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$|a(F,S)| \\ll _\\epsilon \\frac{k^{1/4+\\epsilon } (4\\pi)^k}{\\Gamma (k)} c(S)^{-\\frac{1}{2}} \\det (S)^{\\frac{k-1}{2}+\\epsilon }$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$c(S)$</annotation>\n </semantics></math> denotes the gcd of the entries of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, and that its global sup-norm satisfies the bound <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>∥</mo>\n <mrow>\n <mo>(</mo>\n <mo>det</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mfrac>\n <mi>k</mi>\n <mn>2</mn>\n </mfrac>\n </msup>\n <msub>\n <mrow>\n <mi>F</mi>\n <mo>∥</mo>\n </mrow>\n <mi>∞</mi>\n </msub>\n <msub>\n <mo>≪</mo>\n <mi>ε</mi>\n </msub>\n <msup>\n <mi>k</mi>\n <mrow>\n <mfrac>\n <mn>5</mn>\n <mn>4</mn>\n </mfrac>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Vert (\\det Y)^{\\frac{k}{2}}F\\Vert _\\infty \\ll _\\epsilon k^{\\frac{5}{4}+\\epsilon }$</annotation>\n </semantics></math>. The former result depends on new bounds that we establish for the relevant local integrals appearing in the refined global Gan–Gross–Prasad conjecture (which is now a theorem due to Furusawa and Morimoto) for Bessel periods.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70119","citationCount":"0","resultStr":"{\"title\":\"Bounds on Fourier coefficients and global sup-norms for Siegel cusp forms of degree 2\",\"authors\":\"Félicien Comtat, Jolanta Marzec-Ballesteros, Abhishek Saha\",\"doi\":\"10.1112/jlms.70119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> be an <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math>-normalized Siegel cusp form for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Sp</mi>\\n <mn>4</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\rm Sp}_4({\\\\mathbb {Z}})$</annotation>\\n </semantics></math> of weight <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> that is a Hecke eigenform and not a Saito–Kurokawa lift. Assuming the generalized Riemann hypothesis, we prove that its Fourier coefficients satisfy the bound <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>a</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>,</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n </mrow>\\n <msub>\\n <mo>≪</mo>\\n <mi>ε</mi>\\n </msub>\\n <mfrac>\\n <mrow>\\n <msup>\\n <mi>k</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>4</mn>\\n <mo>+</mo>\\n <mi>ε</mi>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>4</mn>\\n <mi>π</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>k</mi>\\n </msup>\\n </mrow>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mfrac>\\n <mi>c</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </msup>\\n <mo>det</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <mo>+</mo>\\n <mi>ε</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$|a(F,S)| \\\\ll _\\\\epsilon \\\\frac{k^{1/4+\\\\epsilon } (4\\\\pi)^k}{\\\\Gamma (k)} c(S)^{-\\\\frac{1}{2}} \\\\det (S)^{\\\\frac{k-1}{2}+\\\\epsilon }$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$c(S)$</annotation>\\n </semantics></math> denotes the gcd of the entries of <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>, and that its global sup-norm satisfies the bound <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>∥</mo>\\n <mrow>\\n <mo>(</mo>\\n <mo>det</mo>\\n <mi>Y</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <mfrac>\\n <mi>k</mi>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>F</mi>\\n <mo>∥</mo>\\n </mrow>\\n <mi>∞</mi>\\n </msub>\\n <msub>\\n <mo>≪</mo>\\n <mi>ε</mi>\\n </msub>\\n <msup>\\n <mi>k</mi>\\n <mrow>\\n <mfrac>\\n <mn>5</mn>\\n <mn>4</mn>\\n </mfrac>\\n <mo>+</mo>\\n <mi>ε</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Vert (\\\\det Y)^{\\\\frac{k}{2}}F\\\\Vert _\\\\infty \\\\ll _\\\\epsilon k^{\\\\frac{5}{4}+\\\\epsilon }$</annotation>\\n </semantics></math>. The former result depends on new bounds that we establish for the relevant local integrals appearing in the refined global Gan–Gross–Prasad conjecture (which is now a theorem due to Furusawa and Morimoto) for Bessel periods.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70119\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用