Wheat (Triticum aestivum L.) is one of the world's main food crops and the largest phosphorus (P) fertilizer consumer globally. However, the molecular mechanism of P distribution in wheat remains largely unknown. This study investigated the TaSULTR gene family and functionally characterized TaSPDT (TaSULTR3;4). Thirty-three TaSULTR genes were identified and divided into four groups. These genes contained three tandem duplications and 28 segmental duplications. TaSPDT was localized on the plasma membrane and demonstrated P transport activity. TaSPDT was mainly expressed at nodes, and its expression was elevated under low P conditions. TaSPDT was distributed on the xylem and phloem of enlarged and diffuse vascular bundles at nodes, as well as on the parenchyma cell bridge between vascular bundles. TaSPDT knockout reduced P distribution to young leaves but increased it in older leaves during the vegetative stage under low P availability. P uptake by roots, transfer to above-ground tissues, and redistribution within aerial organs were unaffected. At the reproductive stage, TaSPDT knockout notably diminished P allocation to grains, resulting in a significant decrease in grain yield, particularly under P-deficient conditions. These results suggest that TaSPDT mediates the transmembrane transport of P from the xylem to the phloem at the nodes, resulting in the preferential distribution of P to grains. This study enables a better understanding of the TaSULTR gene family and P distribution in wheat.