Keerthana Chand, Tobias Fritsch, Simon Oster, Alexander Ulbricht, Konstantin Poka, Giovanni Bruno
{"title":"使用黄金标准方法对金属激光束粉末床融合的刚性三维图像注册方法进行比较研究","authors":"Keerthana Chand, Tobias Fritsch, Simon Oster, Alexander Ulbricht, Konstantin Poka, Giovanni Bruno","doi":"10.1007/s10921-025-01174-0","DOIUrl":null,"url":null,"abstract":"<div><p>In Additive Manufacturing (AM), precise rigid three-dimensional (3D) image registration between X-ray Computed Tomography (XCT) scans and Computer-Aided Design (CAD) models is an important step for the quantification of distortions in produced parts. Given the absence of standardized benchmarks for image registration in AM, we introduce a gold standard for 3D image registration, using a reference base plate beneath the build structure. This gold standard is used to quantify the accuracy of rigid registration, with a proof of concept demonstrated in PBF-LB/M. In this study, we conduct a comparative analysis of various rigid 3D registration methods useful for quality assurance of PBF-LB/M parts including feature-based, intensity-based, and point cloud-based approaches. The performance of each registration method is evaluated using measures of alignment accuracy based on the gold standard and computational efficiency. Our results indicate significant differences in the efficacy of these methods, with point cloud based Coherent Point Drift (CPD) showing superior performance in both alignment and computational efficiency. The rigidly registered 3D volumes are used to estimate the deformation field of the printed parts relative to the nominal CAD design using Digital Volume Correlation (DVC). The quality of the estimated deformation field is assessed using the Dice score metric. This study provides insights into methods for enhancing the precision and reliability of AM process.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01174-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Rigid Three-Dimensional Image Registration Methods for Powder Bed Fusion with Laser Beam of Metals Using a Gold Standard Approach\",\"authors\":\"Keerthana Chand, Tobias Fritsch, Simon Oster, Alexander Ulbricht, Konstantin Poka, Giovanni Bruno\",\"doi\":\"10.1007/s10921-025-01174-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Additive Manufacturing (AM), precise rigid three-dimensional (3D) image registration between X-ray Computed Tomography (XCT) scans and Computer-Aided Design (CAD) models is an important step for the quantification of distortions in produced parts. Given the absence of standardized benchmarks for image registration in AM, we introduce a gold standard for 3D image registration, using a reference base plate beneath the build structure. This gold standard is used to quantify the accuracy of rigid registration, with a proof of concept demonstrated in PBF-LB/M. In this study, we conduct a comparative analysis of various rigid 3D registration methods useful for quality assurance of PBF-LB/M parts including feature-based, intensity-based, and point cloud-based approaches. The performance of each registration method is evaluated using measures of alignment accuracy based on the gold standard and computational efficiency. Our results indicate significant differences in the efficacy of these methods, with point cloud based Coherent Point Drift (CPD) showing superior performance in both alignment and computational efficiency. The rigidly registered 3D volumes are used to estimate the deformation field of the printed parts relative to the nominal CAD design using Digital Volume Correlation (DVC). The quality of the estimated deformation field is assessed using the Dice score metric. This study provides insights into methods for enhancing the precision and reliability of AM process.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-025-01174-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01174-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01174-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A Comparative Study of Rigid Three-Dimensional Image Registration Methods for Powder Bed Fusion with Laser Beam of Metals Using a Gold Standard Approach
In Additive Manufacturing (AM), precise rigid three-dimensional (3D) image registration between X-ray Computed Tomography (XCT) scans and Computer-Aided Design (CAD) models is an important step for the quantification of distortions in produced parts. Given the absence of standardized benchmarks for image registration in AM, we introduce a gold standard for 3D image registration, using a reference base plate beneath the build structure. This gold standard is used to quantify the accuracy of rigid registration, with a proof of concept demonstrated in PBF-LB/M. In this study, we conduct a comparative analysis of various rigid 3D registration methods useful for quality assurance of PBF-LB/M parts including feature-based, intensity-based, and point cloud-based approaches. The performance of each registration method is evaluated using measures of alignment accuracy based on the gold standard and computational efficiency. Our results indicate significant differences in the efficacy of these methods, with point cloud based Coherent Point Drift (CPD) showing superior performance in both alignment and computational efficiency. The rigidly registered 3D volumes are used to estimate the deformation field of the printed parts relative to the nominal CAD design using Digital Volume Correlation (DVC). The quality of the estimated deformation field is assessed using the Dice score metric. This study provides insights into methods for enhancing the precision and reliability of AM process.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.