空位工程钒酸铋用于光电催化甘油氧化同时制氢†

EES catalysis Pub Date : 2025-01-24 DOI:10.1039/D4EY00211C
Haoyue Sun, Rui Tang, Lizhuo Wang, Yuhang Liang, Wenjie Yang, Zhisheng Lin, Xingmo Zhang, Kaijuan Chen, Weibin Liang, Shenlong Zhao, Rongkun Zheng and Jun Huang
{"title":"空位工程钒酸铋用于光电催化甘油氧化同时制氢†","authors":"Haoyue Sun, Rui Tang, Lizhuo Wang, Yuhang Liang, Wenjie Yang, Zhisheng Lin, Xingmo Zhang, Kaijuan Chen, Weibin Liang, Shenlong Zhao, Rongkun Zheng and Jun Huang","doi":"10.1039/D4EY00211C","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrocatalytic (PEC) water splitting offers a sustainable pathway for clean H<small><sub>2</sub></small> production, and its integration with biomass valorization further enhances eco-economic efficiency. In this study, a BiVO<small><sub>4</sub></small> catalyst with an optimized oxygen vacancy (Ov-BVO) concentration was grown on a SnO<small><sub>2</sub></small> skeleton, achieving efficient PEC glycerol oxidation to selectively produce dihydroxyacetone (DHA) and H<small><sub>2</sub></small> under neutral conditions. By incorporating Ov-BVO with SnO<small><sub>2</sub></small>, the light-harvesting and photo-induced carrier transfer efficiencies were significantly improved. Ov played a crucial role in selectively absorbing and activating the secondary –OH group of glycerol molecules, as revealed by theoretical and experimental studies. However, excessive Ov induced carrier recombination, underscoring the need for an optimal Ov concentration, which was achieved by tailoring heat treatment conditions. The SnO<small><sub>2</sub></small>/BVO-400 catalyst demonstrated a trade-off between the prolonged carrier lifetime and efficient reactant adsorption, exhibiting a PEC DHA productivity of 144 mmol m<small><sup>−2</sup></small> h<small><sup>−1</sup></small> with 26.5% selectivity, alongside H<small><sub>2</sub></small> generation (1850 mmol m<small><sup>−2</sup></small> h<small><sup>−1</sup></small>). This work lays the groundwork to achieve value-added chemical fabrication through neutral PEC glycerol reforming and the potential scale-up of this sustainable technology.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 337-346"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00211c?page=search","citationCount":"0","resultStr":"{\"title\":\"Vacancy-engineered bismuth vanadate for photoelectrocatalytic glycerol oxidation with simultaneous hydrogen production†\",\"authors\":\"Haoyue Sun, Rui Tang, Lizhuo Wang, Yuhang Liang, Wenjie Yang, Zhisheng Lin, Xingmo Zhang, Kaijuan Chen, Weibin Liang, Shenlong Zhao, Rongkun Zheng and Jun Huang\",\"doi\":\"10.1039/D4EY00211C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photoelectrocatalytic (PEC) water splitting offers a sustainable pathway for clean H<small><sub>2</sub></small> production, and its integration with biomass valorization further enhances eco-economic efficiency. In this study, a BiVO<small><sub>4</sub></small> catalyst with an optimized oxygen vacancy (Ov-BVO) concentration was grown on a SnO<small><sub>2</sub></small> skeleton, achieving efficient PEC glycerol oxidation to selectively produce dihydroxyacetone (DHA) and H<small><sub>2</sub></small> under neutral conditions. By incorporating Ov-BVO with SnO<small><sub>2</sub></small>, the light-harvesting and photo-induced carrier transfer efficiencies were significantly improved. Ov played a crucial role in selectively absorbing and activating the secondary –OH group of glycerol molecules, as revealed by theoretical and experimental studies. However, excessive Ov induced carrier recombination, underscoring the need for an optimal Ov concentration, which was achieved by tailoring heat treatment conditions. The SnO<small><sub>2</sub></small>/BVO-400 catalyst demonstrated a trade-off between the prolonged carrier lifetime and efficient reactant adsorption, exhibiting a PEC DHA productivity of 144 mmol m<small><sup>−2</sup></small> h<small><sup>−1</sup></small> with 26.5% selectivity, alongside H<small><sub>2</sub></small> generation (1850 mmol m<small><sup>−2</sup></small> h<small><sup>−1</sup></small>). This work lays the groundwork to achieve value-added chemical fabrication through neutral PEC glycerol reforming and the potential scale-up of this sustainable technology.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 2\",\"pages\":\" 337-346\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00211c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00211c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00211c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光电催化(PEC)水分解为清洁制氢提供了一条可持续的途径,其与生物质增值的结合进一步提高了生态经济效率。在本研究中,优化氧空位(Ov-BVO)浓度的BiVO4催化剂生长在SnO2骨架上,在中性条件下实现了高效的PEC甘油氧化,选择性地产生二羟基丙酮(DHA)和H2。将Ov-BVO与SnO2掺入后,光捕获和光诱导载流子转移效率显著提高。理论和实验研究表明,Ov在选择性吸收和激活甘油分子的次级-OH基团中起着至关重要的作用。然而,过多的Ov诱导载流子重组,强调需要一个最佳的Ov浓度,这是通过调整热处理条件来实现的。SnO2/BVO-400催化剂在延长载体寿命和高效吸附反应物之间取得了平衡,PEC DHA的产率为144 mmol m−2 h−1,选择性为26.5%,同时生成H2 (1850 mmol m−2 h−1)。这项工作为通过中性PEC甘油重整和这种可持续技术的潜在规模扩大实现增值化学制造奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vacancy-engineered bismuth vanadate for photoelectrocatalytic glycerol oxidation with simultaneous hydrogen production†

Vacancy-engineered bismuth vanadate for photoelectrocatalytic glycerol oxidation with simultaneous hydrogen production†

Photoelectrocatalytic (PEC) water splitting offers a sustainable pathway for clean H2 production, and its integration with biomass valorization further enhances eco-economic efficiency. In this study, a BiVO4 catalyst with an optimized oxygen vacancy (Ov-BVO) concentration was grown on a SnO2 skeleton, achieving efficient PEC glycerol oxidation to selectively produce dihydroxyacetone (DHA) and H2 under neutral conditions. By incorporating Ov-BVO with SnO2, the light-harvesting and photo-induced carrier transfer efficiencies were significantly improved. Ov played a crucial role in selectively absorbing and activating the secondary –OH group of glycerol molecules, as revealed by theoretical and experimental studies. However, excessive Ov induced carrier recombination, underscoring the need for an optimal Ov concentration, which was achieved by tailoring heat treatment conditions. The SnO2/BVO-400 catalyst demonstrated a trade-off between the prolonged carrier lifetime and efficient reactant adsorption, exhibiting a PEC DHA productivity of 144 mmol m−2 h−1 with 26.5% selectivity, alongside H2 generation (1850 mmol m−2 h−1). This work lays the groundwork to achieve value-added chemical fabrication through neutral PEC glycerol reforming and the potential scale-up of this sustainable technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信