IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-03-07 DOI:10.1039/D4RA08960J
Thomas A. Manz
{"title":"Dihedral–torsion model potentials that include angle-damping factors†","authors":"Thomas A. Manz","doi":"10.1039/D4RA08960J","DOIUrl":null,"url":null,"abstract":"<p >This groundbreaking study derives and tests several new dihedral torsion model potentials for constructing classical forcefields for atomistic simulations of materials. (1) The new angle-damped dihedral torsion (ADDT) model potential is preferred when neither contained equilibrium bond angle is linear (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> and <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) ≠ 180°), at least one of the contained equilibrium bond angles is ≥ 130° (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> or <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) ≥ 130°), and the dihedral torsion potential contains some odd-function contributions (<em>i.e.</em>, <em>U</em>[<em>ϕ</em>] ≠ <em>U</em>[−<em>ϕ</em>]). (2) The new angle-damped cosine only (ADCO) model potential is preferred when neither contained equilibrium bond angle is linear (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> and <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) ≠180°), at least one of the contained equilibrium bond angles is ≥ 130° (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> or <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) ≥ 130°), and the dihedral torsion potential contains no odd-function contributions (<em>i.e.</em>, <em>U</em>[<em>ϕ</em>] = <em>U</em>[−<em>ϕ</em>]). (3) The new constant amplitude dihedral torsion (CADT) model potential is preferred when neither contained equilibrium bond angle is linear (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> and <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) ≠ 180°), both contained equilibrium bond angles are &lt;130° (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> and <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) &lt; 130°), and the dihedral torsion potential contains some odd-function contributions (<em>i.e.</em>, <em>U</em>[<em>ϕ</em>] ≠ <em>U</em>[−<em>ϕ</em>]). (4) The constant amplitude cosine only (CACO) model potential is preferred when neither contained equilibrium bond angle is linear (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> and <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) ≠180°), both contained equilibrium bond angles are &lt;130° (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> and <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) &lt;130°), and the dihedral torsion potential contains no odd-function contributions (<em>i.e.</em>, <em>U</em>[<em>ϕ</em>] = <em>U</em>[−<em>ϕ</em>]). (5) The new angle-damped linear dihedral (ADLD) model potential is preferred when at least one contained equilibrium bond angle is linear (<em>i.e.</em>, (<em>θ</em><small><sup>eq</sup></small><small><sub>ABC</sub></small> or <em>θ</em><small><sup>eq</sup></small><small><sub>BCD</sub></small>) = 180°). Most importantly, this article derives combined angle-dihedral coordinate branch equivalency conditions and angle-damping factors that ensure the angle-damped torsion model potentials (<em>e.g.</em>, ADDT, ADCO, and ADLD) are mathematically consistent and continuously differentiable even as at least one contained bond angle approaches linearity (<em>i.e.</em>, as (<em>θ</em><small><sub>ABC</sub></small> or <em>θ</em><small><sub>BCD</sub></small>) → 180°). This article introduces the torsion offset potential (TOP). I show the TOP gives rise in some materials to the unusual physical phenomenon of slip torsion. For various molecules, extensive quantitative comparisons to high-level quantum chemistry calculations (<em>e.g.</em>, CCSD) and experimental vibrational frequencies showed these new dihedral torsion model potentials perform superbly.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 10","pages":" 7257-7306"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08960j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08960j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项开创性的研究推导并测试了几种新的二重扭转模型势,用于构建经典力场,用于材料的原子模拟。(1) 当所包含的平衡键角都不是线性的(即θeqABC 和θeqBCD)时,新的角度阻尼二重扭转(ADDT)模型势能更受青睐、(θeqABC 和 θeqBCD) ≠ 180°),所含平衡键角中至少有一个角度≥ 130°(即 (θeqABC 或 θeqBCD) ≥ 130°),且二面扭转势包含一些奇函数贡献(即 U[ϕ] ≠ U[-j])时,优先选择新的角度阻尼二面扭转(ADDT)模型势。(2) 当所含平衡键角都不是线性的(即(θeqABC 和 θeqBCD) ≠180°),所包含的平衡键角中至少有一个角度≥130°(即 (θeqABC 或 θeqBCD) ≥130°),且二面扭转势不包含奇函数贡献(即 U[ϕ] = U[-j])时,优先选择新的仅角度阻尼余弦(ADCO)模型势。(3) 当所包含的平衡键角都不是线性的(即(θeqABC 和 θeqBCD) ≠ 180°),所含平衡键角均为 <130°(即 (θeqABC 和 θeqBCD) <130°),且二面扭转势包含一些奇函数贡献(即 U[ϕ] ≠ U[-j])时,新的恒定振幅二面扭转(CADT)模型势更受欢迎。(4) 当所包含的平衡键角都不是线性的(即(θeqABC 和 θeqBCD) ≠180°),所含平衡键角均为 <130°(即 (θeqABC 和 θeqBCD) <130°),且二面扭转势不包含奇函数贡献(即 U[ϕ] = U[-j])时,首选 CACO 模型势。(5) 当至少一个包含的平衡键角是线性的(即 (θeqABC 或 θeqBCD) = 180°)时,新的角度阻尼线性二面体(ADLD)模型势能更受青睐。最重要的是,本文推导出了角度-二面体坐标分支组合等价条件和角度阻尼系数,确保角度阻尼扭转模型电位(如 ADDT、ADCO 和 ADLD)在数学上保持一致,即使至少一个包含的键角接近线性(即 (θABC 或 θBCD) → 180°)时也是连续可微的。本文介绍了扭转偏移势(TOP)。我的研究表明,在某些材料中,扭转偏移势会导致滑移扭转这种不寻常的物理现象。对于各种分子,与高水平量子化学计算(如 CCSD)和实验振动频率的广泛定量比较表明,这些新的二面扭转模型势能表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dihedral–torsion model potentials that include angle-damping factors†

Dihedral–torsion model potentials that include angle-damping factors†

This groundbreaking study derives and tests several new dihedral torsion model potentials for constructing classical forcefields for atomistic simulations of materials. (1) The new angle-damped dihedral torsion (ADDT) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠ 180°), at least one of the contained equilibrium bond angles is ≥ 130° (i.e., (θeqABC or θeqBCD) ≥ 130°), and the dihedral torsion potential contains some odd-function contributions (i.e., U[ϕ] ≠ U[−ϕ]). (2) The new angle-damped cosine only (ADCO) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠180°), at least one of the contained equilibrium bond angles is ≥ 130° (i.e., (θeqABC or θeqBCD) ≥ 130°), and the dihedral torsion potential contains no odd-function contributions (i.e., U[ϕ] = U[−ϕ]). (3) The new constant amplitude dihedral torsion (CADT) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠ 180°), both contained equilibrium bond angles are <130° (i.e., (θeqABC and θeqBCD) < 130°), and the dihedral torsion potential contains some odd-function contributions (i.e., U[ϕ] ≠ U[−ϕ]). (4) The constant amplitude cosine only (CACO) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠180°), both contained equilibrium bond angles are <130° (i.e., (θeqABC and θeqBCD) <130°), and the dihedral torsion potential contains no odd-function contributions (i.e., U[ϕ] = U[−ϕ]). (5) The new angle-damped linear dihedral (ADLD) model potential is preferred when at least one contained equilibrium bond angle is linear (i.e., (θeqABC or θeqBCD) = 180°). Most importantly, this article derives combined angle-dihedral coordinate branch equivalency conditions and angle-damping factors that ensure the angle-damped torsion model potentials (e.g., ADDT, ADCO, and ADLD) are mathematically consistent and continuously differentiable even as at least one contained bond angle approaches linearity (i.e., as (θABC or θBCD) → 180°). This article introduces the torsion offset potential (TOP). I show the TOP gives rise in some materials to the unusual physical phenomenon of slip torsion. For various molecules, extensive quantitative comparisons to high-level quantum chemistry calculations (e.g., CCSD) and experimental vibrational frequencies showed these new dihedral torsion model potentials perform superbly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信